Citation: Yue Guozong, Gao Rui, Zhao Pengxiang, Chu Mingfu, Shuai Maobing. Trivalent Uranium Complex in Small Molecules Activation[J]. Acta Chimica Sinica, ;2016, 74(8): 657-663. doi: 10.6023/A16050260 shu

Trivalent Uranium Complex in Small Molecules Activation

  • Corresponding author: Shuai Maobing, shuaimaobing@caep.cn
  • Received Date: 26 May 2016

    Fund Project: the National Natural Science Foundation of China 21601166the National Natural Science Foundation of China 21501156the National Natural Science Foundation of China 51573172the Discipline Development Foundation of Science and Technology on Surface Physics and Chemistry Laboratory ZDXKFZ201506

Figures(12)

  • Uranium, one of typical actinide elements, has strong polarizing property. Using 5f orbitals for bonding with ligands, uranium(III) compounds have some unique reactivities including: migratory insertion, σ-bond metathesis and redox activity etc., which provides researchers with good opportunities to obtain organic uranium complexes or materials with unique structures and reactional properties. In the last 20 years, it has been found that trivalent uranium organic complexes exhibit a wide variety of activation towards small molecules. Due to the significant research and potential industrial value, this field has been well developed in recent years. Some research results for small molecules (such as N2, CO, CO2) activation promoted by trivalent uranium complexes were summarized in the paper.
  • 加载中
    1. [1]

      Shi W. Q., Zhao Y. L., Chai Z. F.Prog. Chem., 2011, 23:1478.

    2. [2]

      Yuan Y. L., Shi W. Q., Lan J. H., Chai Z. F.Chin. Sci. Bull., 2012, 57:581.  doi: 10.1360/972011-2513

    3. [3]

      Monreal M. J., Diaconescu P. L.Nat. Chem., 2010, 2:424.  doi: 10.1038/nchem.642

    4. [4]

      Jones C. J.d-and f-Block Chemistry, Polestar Wheatons, Exeter, 2001 p.86.

    5. [5]

      Ephritikhine M.Dalton Trans. 2006, 2501.

    6. [6]

      Fox A. R., Bart S. C., Meyer K., Cummins C. C.Nature, 2008, 455:341.  doi: 10.1038/nature07372

    7. [7]

      Liddle S. P.Angew. Chem., Int. Ed., 2015, 54:30.

    8. [8]

      Fortier S., Hayton T. W.Coord. Chem. Rev., 2010, 254:197.  doi: 10.1016/j.ccr.2009.06.003

    9. [9]

      Altmaier M., Gaona X., Fanghänel T.Chem. Rev., 2013, 113:901.  doi: 10.1021/cr300379w

    10. [10]

      Loiseau. T.; Mihalcea I., Henry N., Volkringer C.Coord. Chem. Rev. 2014, 266~267, 69.

    11. [11]

      Gardner B. M., Liddle S. T.Eur. J. Inorg. Chem. 2013, 3753.

    12. [12]

      Jones M. B., Gaunt A. J.Chem. Rev., 2013, 113:1137.  doi: 10.1021/cr300198m

    13. [13]

      Arnold P. L., McMullon M. W., Rieb J., Kuhn F. E.Angew. Chem., Int. Ed., 2014, 53:2.  doi: 10.1002/anie.v53.1

    14. [14]

      Karmel I. S. R., Fridman N., Tamm M., Eisen M. S.J. Am. Chem. Soc., 2014, 136:17180.  doi: 10.1021/ja5091436

    15. [15]

      Karmel I. S. R., Fridman N., Eisen M. S.Organometallics, 2015, 34:636.  doi: 10.1021/om501179e

    16. [16]

      Ossola F., Zanella P., Ugo P., Seeber R.Inorg. Chim. Acta, 1988, 147:123.  doi: 10.1016/S0020-1693(00)80640-4

    17. [17]

      Avens L. R., Barnhart D. M., Burns C. J., McKee S. D., Smith W. H.Inorg. Chem., 1994, 33:4245.  doi: 10.1021/ic00097a010

    18. [18]

      Morris D. E., Re R. E. D., Jantunen K. C., Castro-Rodriguez I., Kiplinger J. L.Organometallics, 2004, 23:5142.  doi: 10.1021/om049634v

    19. [19]

      Haber F.DE 229126, 1909.

    20. [20]

      Roussel P., Hitchcock P. B., Tinker N., Scott P.Chem. Commun., 1996, 17:2053.

    21. [21]

      Odom A. L., Arnold P. L., Cummins C. C.J. Am. Chem. Soc., 1998, 120:5836.  doi: 10.1021/ja980095t

    22. [22]

      Cloke F. G. N., Hitchcock P. B. J.Am. Chem. Soc., 2002, 124:9352.  doi: 10.1021/ja027000e

    23. [23]

      Evans W. J., Kozimor S. A., Ziller J. W.J. Am. Chem. Soc., 2003, 125:14264.  doi: 10.1021/ja037647e

    24. [24]

      Mansell S. M., Kaltsoyannis N., Arnold P. L.J. Am. Chem.Soc., 2011, 133:9036.  doi: 10.1021/ja2019492

    25. [25]

      Khodakov A. Y., Chu W., Fongarland P.Chem. Rev., 2007, 107:1692.  doi: 10.1021/cr050972v

    26. [26]

      Brennan J. G., Andersen R. A., Robbins J. L.J. Am. Chem. Soc., 1986, 108:335.  doi: 10.1021/ja00262a046

    27. [27]

      Parry J., Carmona E., Coles S., Hursthouse M. J.Am. Chem. Soc., 1995, 117:2649.  doi: 10.1021/ja00114a030

    28. [28]

      Castro-Rodriguez I., Meyer K. J.Am. Chem. Soc., 2005, 127:11242.  doi: 10.1021/ja053497r

    29. [29]

      Summerscales O. T., Cloke F. G. N., Hitchcock P. B., Green J. C., Hazari N.Science, 2006, 311:829.  doi: 10.1126/science.1121784

    30. [30]

      Summerscales O. T., Cloke F. G. N., Hitchcock P. B., Green J. C., Hazari N. J.Am. Chem. Soc., 2006, 128:9602.  doi: 10.1021/ja063222r

    31. [31]

      Arnold P. L., Turner Z. R., Bellabarba R. M., Tooze R. P.Chem. Sci., 2011, 2:77.  doi: 10.1039/C0SC00452A

    32. [32]

      Gardner B. M., Stewart J. C., Davis A. L., McMaster L. W., Blake A. J., Liddle S. T.Proc. Natl. Acad. Sci., 2012, 109:9265.  doi: 10.1073/pnas.1203417109

    33. [33]

      Gibson D. H.Chem. Rev., 1996, 96:2063.  doi: 10.1021/cr940212c

    34. [34]

      Fujita E.Coord. Chem. Rev. 1999, 185-6, 373.

    35. [35]

      Keith D. W.Science, 2009, 325:1654.  doi: 10.1126/science.1175680

    36. [36]

      Solomon S., Plattner G. K., Knutti R., Friedlingstein P.Proc. Natl. Acad. Sci., 2009, 106:1704.  doi: 10.1073/pnas.0812721106

    37. [37]

      Natrajan L., Pecaut J., Mazzanti M.Dalton Trans. 2006, 1002.

    38. [38]

      Andrews P. C., Beck T., Forsyth C. M., Fraser B. H., Junk P. C., Massi M., Roesky P. W.Dalton Trans. 2007, 5651.

    39. [39]

      Castro-Rodriguez I., Nakai H., Zakharov L. N., Rheingold A. L., Meyer K.Science, 2004, 305:1757.  doi: 10.1126/science.1102602

    40. [40]

      Lam O. P., Bart S. C., Kameo H., Heinemann F. W., Meyer K.Chem. Commun., 2010, 46:3137.  doi: 10.1039/b927142b

    41. [41]

      Castro L., Lam O. P., Bart S. C., Meyer K., Maron L.Organometallics, 2010, 29:5504.  doi: 10.1021/om100479r

    42. [42]

      Schmidt A. C., Nizovtsev A. V., Scheurer A., Heinemann F. W., Meyer K.Chem. Commun., 2012, 48:8634.  doi: 10.1039/c2cc34150f

    43. [43]

      Matson E. M., Forrest W. P., Fanwick P. E., Bart S. C.J. Am. Chem. Soc., 2011, 133:4948.  doi: 10.1021/ja110158s

    44. [44]

      Kahan R. J., Cloke F. G. N., Roea S. M., Niefb F.New J. Chem., 2015, 39:7602.  doi: 10.1039/C5NJ00590F

    45. [45]

      Zhang S. D., Ding Y. Q., Gu Z. M., Wang X. Y., Ye G. A., Wang X. L., Shen X. H., Qin Z., Zhao Y. L., Shi Q. L., Li J. Y.Chemistry Online, 2014, 77:660.

    46. [46]

      Xiao H., Hu H. S., Schwarz W. H. E., Li J. J.Phys. Chem. A, 2010, 114:8837.  doi: 10.1021/jp102107n

    47. [47]

      Wang Y. L., Liu Z. Y., Li Y. X., Bai Z. L., Liu W., Wang Y. X., Xu X. M., Xiao C. L., Sheng D. P., Diwu J., Su J., Chai, Z.F.; Albrecht-Schmitt T. E., Wang S. A.J. Am. Chem. Soc., 2015, 137:6144.  doi: 10.1021/jacs.5b02480

    48. [48]

      Liu W. J.Mol. Phys., 2010, 108:1679.  doi: 10.1080/00268971003781571

    49. [49]

      Hu S. W., Wang X. Y., Chu T. W., Liu X. Q.J. Phys. Chem. A, 2009, 113:9243.  doi: 10.1021/jp904655w

    50. [50]

      Zhang L., Hou G. H., Zi G. F., Ding W. J., Walter M. D.J. Am. Chem. Soc., 2016, 138:5130.  doi: 10.1021/jacs.6b01391

    51. [51]

      Ding W. J., Fang W. H., Chai Z. F., Wang D. Q.J. Chem. Theory Comput., 2012, 8:3605.  doi: 10.1021/ct300075n

    52. [52]

      Ding W. J., Wang D. Q.Organometallics, 2014, 33:7007.  doi: 10.1021/om500797h

    53. [53]

      Wang D.-Q., Gunsteren W. F.V. Prog. Chem., 2011, 23:1566.

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    14. [14]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    15. [15]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    16. [16]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(1966)
  • HTML views(621)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return