Citation: Zhao Mi, Li Haohua, Shen Xiaoping. Facile Electrochemical Synthesis of CeO2@Ag@CdSe Nanotube Arrays with Enhanced Photoelectrochemical Performance[J]. Acta Chimica Sinica, ;2016, 74(10): 825-832. doi: 10.6023/A16050256 shu

Facile Electrochemical Synthesis of CeO2@Ag@CdSe Nanotube Arrays with Enhanced Photoelectrochemical Performance

  • Corresponding author: Shen Xiaoping, 
  • Received Date: 24 May 2016

    Fund Project:

  • In this work, for the first time, three-component CeO2@Ag@CdSe heterostructured nanotube arrays with remarkable photoelectrochemical (PEC) properties have been synthesized on the FTO conductive glass substrate by an electrodeposition method. One-dimensional vertically ordered CeO2 nanotube arrays were prepared on the FTO substrate by electrodeposition method with Ce(NO3)2·6H2O and C2H6SO as the raw materials. Ag nanoparticles were deposited on the surface of CeO2 nanotube arrays through a successive electrodeposition in a solution of AgNO3, and a composite system of CeO2@Ag was obtained. Then a thin CdSe layer was deposited and covered on the CeO2@Ag system to form three-component CeO2@Ag@CdSe heterostructured nanotube arrays. The as-synthesized products were characterized using X-ray diffraction (XRD), X-ray energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectroscopy. The PEC properties of the obtained products were recorded with electrochemical workstation, and the results showed that the CdSe layer could greatly enhance light harvesting and significantly improve charge separation. Moreover, the modification with Ag nanoparticles can significantly strengthen the light-harvesting ability through the localized surface plasma resonance effect and provide an interior direct pathway to facilitate the separation and transport of photogenerated carriers. It has been demonstrated that the enhanced PEC properties of CeO2@Ag@CdSe heterostructures are direct consequence of the synergetic effects of enhanced visible light absorption and the effective separation and transportation of photogenerated carriers at interface of type-II heterostructure via the Ag nanoparticles. Therefore, the CeO2@Ag@CdSe heterostructured nanotubes generate a remarkable photocurrent density of 3.92 mA·cm-2 at a potential of -0.2 V (vs. Ag/AgCl), which is 4.9 and 17.9 times higher than that of two-component CeO2@CdSe (0.802 mA·cm-2) and CeO2@Ag (0.218 mA·cm-2) systems, respectively. It also gives an incident photon to current conversion efficiency (IPCE) as high as 72% at around 360 nm. Moreover, the photoelectrode shows high photostability during the test period over 16 min.
  • 加载中
    1. [1]

      [1] Chen, H. M.; Chen, C. K.; Liu, R. S.; Zhang, L.; Zhang, J.; Wil-kinson, D. P. Chem. Soc. Rev. 2012, 41(17), 5654.

    2. [2]

      [2] Wang, G.; Lu, X.; Zhai, T.; Ling, Y.; Wang, H.; Tong, Y.; Li, Y. Nanoscale 2012, 4(10), 3123.

    3. [3]

      [3] Prieto-Centurion, D.; Eaton, T. R.; Roberts, C. A.; Fanson, P. T.; Notestein, J. M. Appl. Catal. B-Environ. 2015, 168, 68.

    4. [4]

      [4] Zhu, H.; Song, N.; Lian, T. J. Am. Chem. Soc. 2010, 132(42), 15038.

    5. [5]

      [5] Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese). (宋芳源, 丁勇, 赵崇超, 化学学报, 2014, 72(2), 133.)

    6. [6]

      [6] Wan, G.; Fu, Y.; Guo, J.; Xiang, Z. Acta Chim. Sinica 2015, 73, 557(in Chinese). (万刚, 付宇昂, 郭佳宁, 向中华, 化学学报, 2015, 73(6), 557.)

    7. [7]

      [7] Li, Y.; Qi, L. Acta Chim. Sinica 2015, 73(9), 869(in Chinese). (李扬, 齐利民, 化学学报, 2015, 73(9), 869.)

    8. [8]

      [8] Khan, M. M.; Ansari, S. A.; Ansari, M. O.; Min, B. K.; Lee, J.; Cho, M. H. J. Phys. Chem. C 2014, 118(18), 9477.

    9. [9]

      [9] Lu, X.; Zhai, T.; Cui, H.; Shi, J.; Xie, S.; Huang, Y.; Liang, C.; Tong, Y. J. Mater. Chem. 2011, 21(15), 5569.

    10. [10]

      [10] Li, W.; Xie, S.; Li, M.; Ouyang, X.; Cui, G.; Lu, X.; Tong, Y. J. Mater. Chem. A 2013, 1(13), 4190.

    11. [11]

      [11] Zhang, J.; Li, L.; Huang, X.; Li, G. J. Mater. Chem. 2012, 22(21), 10480.

    12. [12]

      [12] Khan, M. M.; Ansari, S. A.; Lee, J. H.; Ansari, M. O.; Lee, J.; Cho, M. H. J. Colloid Interface Sci. 2014, 431, 255.

    13. [13]

      [13] Zhang, N.; Liu, S.; Xu, Y. J. Nanoscale 2012, 4(7), 2227.

    14. [14]

      [14] Li, H.; Chen, C.; Huang, X.; Leng, Y.; Hou, M.; Xiao, X.; Bao, J.; You, J.; Zhang, W.; Wang, Y.; Song, J.; Wang, Y.; Liu, Q.; Hope, G. A. J. Power Sources 2014, 247, 915.

    15. [15]

      [15] Lv, J.; Wang, H.; Gao, H.; Xu, G.; Wang, D.; Chen, Z.; Zhang, X.; Zhang, Z.; Wu, Y. Surf. Coat. Tech. 2015, 261, 356.

    16. [16]

      [16] Srivastava, M.; Das, A. K.; Khanra, P.; Uddin, M. E.; Kim, N. H.; Lee, J. H. J. Mater. Chem. A 2013, 1(34), 9792.

    17. [17]

      [17] Al-Kuhaili, M. F.; Durrani, S. M. A.; Bakhtiari, I. A. Appl. Surf. Sci. 2008, 255(5), 3033.

    18. [18]

      [18] Li, W.; Xie, S.; Li, M.; Ouyang, X.; Cui, G.; Lu, X.; Tong, Y. J. Mater. Chem. A 2013, 1(13), 4190.

    19. [19]

      [19] Khan, M. M.; Ansari, S. A.; Lee, J.; Ansari, M. O.; Lee, J.; Cho, M. H. J. Colloid Interface Sci. 2014, 431, 255.

    20. [20]

      [20] Kuang, P.; Su, Y.; Xiao, K.; Liu, Z.; Li, N.; Wang, H.; Zhang, J. ACS Appl. Mater. Interfaces 2015, 7, 16387.

    21. [21]

      [21] Li, S. J.; Ping, Y.; Yan, J. M.;Wang, H. L.; Wu, M.; Jiang, Q. J. Mater. Chem. A 2015, 3(28), 14535.

    22. [22]

      [22] Saravanan, R.; Karthikeyan, N.; Gupta, V. K.; Thirumal, E.; Thangadurai, P.; Narayanan, V.; Stephen, A. Mat. Sci. Eng. C 2013, 33(4), 2235.

    23. [23]

      [23] Weber, W. H.; Hass, K. C.; McBride, J. R. Phys. Rev. B 1993, 48, 178.

    24. [24]

      [24] Lu, X.; Huang, X.; Xie, S.; Zheng, D.; Liu, Z.; Liang, C.; Tong, Y. Langmuir 2010, 26(10), 7569.

    25. [25]

      [25] Hou, Y.; Zuo, F.; Dagg, A.; Feng, P. Nano Lett. 2012, 12(12), 6464.

    26. [26]

      [26] Chandrasekharan, N.; Kamat, P. V. J. Phys. Chem. B 2000, 104(46), 10851.

    27. [27]

      [27] Miao, J.; Yang, H. B.; Khoo, S. Y.; Liu, B. Nanoscale 2013, 5(22), 11118.

    28. [28]

      [28] Zhang, X.; Li, Y.; Zhao, J.; Wang, S.; Li, Y.; Dai, H.; Sun, X. J. Power Sources 2014, 269, 466.

    29. [29]

      [29] Pu, Y. C.; Ling, Y.; Chang, K. D.; Liu, C. M.; Zhang, J. Z.; Hsu, Y. J.; Li, Y. J. Phys. Chem. C 2014, 118(27), 15086.

    30. [30]

      [30] Ling, Y.; Wang, G.; Wang, H.; Yang, Y.; Li, Y. ChemSusChem 2014, 7(3), 848.

    31. [31]

      [31] Zhang, J.; Wang, L.; Liu, X.; Li, X. A.; Huang, W. J. Mater. Chem. A 2015, 3(2), 535.

    32. [32]

      [32] Lu, X. H.; Xie, S. L.; Zhai, T.; Zhao, Y. F.; Zhang, P.; Zhang, Y. L.; Tong, Y. X. RSC Adv. 2011, 1(7), 1207.

  • 加载中
    1. [1]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    2. [2]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(2)
  • Abstract views(617)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return