Citation: Kang Wenbin, Xia Yun, Wang Jun, Wang Wei. Sulfur Dioxide Promotes the Formation of Amyloid Fibrils through Enhanced Secondary Nucleation: A Molecular Dynamics Study[J]. Acta Chimica Sinica, ;2016, 74(8): 694-702. doi: 10.6023/A16050216 shu

Sulfur Dioxide Promotes the Formation of Amyloid Fibrils through Enhanced Secondary Nucleation: A Molecular Dynamics Study

  • Corresponding author: Kang Wenbin, wbkang@hbmu.edu.cn Wang Jun, wbkang@hbmu.edu.cn Wang Wei, wangwei@nju.edu.cn
  • Received Date: 3 May 2016

    Fund Project: the National Basic Research Program of China 2013CB834100the National Natural Science Foundation of China 81421091the National Natural Science Foundation of China 11334004the National Natural Science Foundation of China 11174133

Figures(9)

  • Air pollution is a common phenomenon in developing countries, and pollutants are suggested to be essential reasons to produce various diseases, such as cancers, neuro-degenerative diseases and so on. In present work, the effects of sulfur dioxide on the dissociation of Aβ17~42 peptides from core region of Aβ fibril were studied with umbrella sampling method. It is found that the free energy penalty related to the dissociation processes would decrease for larger concentrations of sulfur dioxide. The detailed interactions between peptides and sulfur dioxide are analyzed based on contact statistics. It is suggested that the destabilization of the Aβ fibril is realized by the binding of sulfur dioxide with the peptide backbone as well as the side chains of charged residues, which results in the decrease of hydrophobic interaction and blockage of the electrostatic interactions between charged residues. Furthermore, the positive contribution of such a marginal destabilization on the growth of fibril is also discussed with a nonlinear master equation, which is consistent with the medical knowledge. Through these computations, we disclose the characteristics of the interactions between air pollutants and protein molecules. We expect that these results could help to assess the effect of air pollutants on human health.
  • 加载中
    1. [1]

      Dominici, F.; Greenstone, M.; Sunstein, C. Science 2014, 344, 257.  doi: 10.1126/science.1247348

    2. [2]

      Wang, Y.; Hu, M. Acta Chim. Sinica 2016, 74, 356 (in Chinese).  doi: 10.6023/A16010008
       

    3. [3]

      Guo, S.; Hu, M.; Guo, Q.; Shang, D. Acta Chim. Sinica 2014, 72, 658 (in Chinese).  doi: 10.6023/A14040254
       

    4. [4]

      Guo, S.; Hu, M.; Shang, D.; Guo, Q. Acta Chim. Sinica 2014, 72, 145 (in Chinese).  doi: 10.6023/A13111169
       

    5. [5]

      Li, J.; Meng, Z. Asian J. Ecotoxicol. 2012, 7, 133 (in Chinese).

    6. [6]

      Yao, G.; Sang, N. Chin. J. Appl. Environ. Biol. 2015, 21, 372 (in Chinese).

    7. [7]

      Yu, F.; Li, D.; Xie, M. Ecol. Sci. 2016, 35, 195 (in Chinese).

    8. [8]

      Ma, Y.; Wang, J. Chin. J. Publ. Health 2011, 27, 800 (in Chinese).

    9. [9]

      Wu, Y.; Meng, Q.; Wei, D.; Bai, J. Chin. Bull. Life Sci. 2011, 23, 784 (in Chinese).

    10. [10]

      Zhao, D.; Tang, W.; Wang, W. J. Int. Neurology and Neurosurgery 2014, 41, 363 (in Chinese).

    11. [11]

      Zuo, G. e-Sci. Technol. & Appl. 2011, 2, 63 (in Chinese).

    12. [12]

      Du, J.; Ge, C. Chin. Sci. Bull. 2015, 60, 2977 (in Chinese).

    13. [13]

      Wang, G.; Wang, P. Sci. Technol. Rev. 2014, 32, 72 (in Chinese).

    14. [14]

      Yang, W.; Bai, Z.; Zhou, X. J. Environ. Health 2015, 32, 753 (in Chinese).

    15. [15]

      Li, J.; Meng, Z. Nitric Oxide 2009, 20, 166.  doi: 10.1016/j.niox.2008.12.003

    16. [16]

      Wang, X.; Jin, H.; Tang, C. Eur. J. Pharmacol. 2011, 670, 1.  doi: 10.1016/j.ejphar.2011.08.031

    17. [17]

      Liu, D.; Huang, Y.; Bu, D. Cell Death Dis. 2014, 5, e1251.  doi: 10.1038/cddis.2014.229

    18. [18]

      Huang, Y.; Shen, Z.; Chen, Q. Sci. Rep. 2016, 6, 19503.  doi: 10.1038/srep19503

    19. [19]

      Duff, K.; Eckman, C.; Zehr, C. Nature 1996, 383, 710.  doi: 10.1038/383710a0

    20. [20]

      Cook, D.; Forman, M.; Sung, J. Nat. Med. 1997, 3, 1021.  doi: 10.1038/nm0997-1021

    21. [21]

      Knowles, T.; Waudby, C.; Devlin, G. Science 2009, 326, 1533.  doi: 10.1126/science.1178250

    22. [22]

      Bloom, G. JAMA Neurology 2014, 71, 505.  doi: 10.1001/jamaneurol.2013.5847

    23. [23]

      Xi, W.; Li, W.; Wang, W. J. Phys. Chem. B 2012, 116, 7398.  doi: 10.1021/jp300389g

    24. [24]

      Xi, W.; Li, W.; Wang, W. Chin. Phys. Lett. 2012, 29, 088702.  doi: 10.1088/0256-307X/29/8/088702

    25. [25]

      Li, W.; Zhang, J.; Su, Y.; Wang, J.; Qin, M.; Wang, W. J. Phys. Chem. B 2007, 111, 13814.  doi: 10.1021/jp076213t

    26. [26]

      Lührs, T.; Ritter, C.; Adrian, M. Proc. Natl. Acad. Sci. 2005, 102, 17342.  doi: 10.1073/pnas.0506723102

    27. [27]

      Ribeiro, M. J. Phys. Chem. B 2006, 110, 8789.  doi: 10.1021/jp060518a

    28. [28]

      Moin, S.; Lim, L.; Hofer, T. Inorg. Chem. 2011, 50, 3379.  doi: 10.1021/ic102240p

    29. [29]

      Berendsen, H.; Postma, J.; Gunsteren, W. Intermolecular Forces, Springer Netherlands, 1981, pp. 331~342.

    30. [30]

      Ketko, M.; Kamath, G.; Potoff, J. J. Phys. Chem. B 2011, 115, 4949.  doi: 10.1021/jp2010524

    31. [31]

      Li, Z.; Guo, X.; Wang, H. Acta Phys.-Chim. Sinica 2009, 25, 6 (in Chinese).

    32. [32]

      He, Z.; Zhou, J. Acta Chim. Sinica 2011, 69, 2901 (in Chinese).
       

    33. [33]

      Izrailev, S.; Stepaniants, S.; Isralewitz, B. Computational Molecular Dynamics: Challenges, Methods, Ideas, Springer, Berlin Heidelberg, 1999, pp. 39~65.

    34. [34]

      Park, S.; Khalili-Araghi, F.; Tajkhorshid, E. J. Chem. Phys. 2003, 119, 3559.  doi: 10.1063/1.1590311

    35. [35]

      Justin, A.; David, R. J. Phys. Chem. B 2010, 114, 1652.  doi: 10.1021/jp9110794

    36. [36]

      Park, S.; Schulten, K. J. Chem. Phys. 2004, 120, 5946.  doi: 10.1063/1.1651473

    37. [37]

      Patey, G.; Valleau, J. Chem. Phys. Lett. 1973, 21, 297.  doi: 10.1016/0009-2614(73)80139-3

    38. [38]

      Torrie, G.; Valleau, J. Chem. Phys. Lett. 1974, 28, 578.  doi: 10.1016/0009-2614(74)80109-0

    39. [39]

      Torrie, G.; Valleau, J. J. Comput. Phys. 1977, 23, 187.  doi: 10.1016/0021-9991(77)90121-8

    40. [40]

      Kumar, S.; Rosenberg, J.; Bouzida, D. J. Comput. Chem. 1992, 13, 1011.  doi: 10.1002/(ISSN)1096-987X

    41. [41]

      Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B. L.; Grubmuller, H. J. Comput. Chem. 2015, 36, 1990.  doi: 10.1002/jcc.24030

    42. [42]

      Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.  doi: 10.1063/1.464397

    43. [43]

      Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L. J. Chem. Phys. 1995, 103, 8577.  doi: 10.1063/1.470117

    44. [44]

      Hess, B.; Bekker, H.; Berendsen, H. J. Comput. Chem. 1997, 18, 1463.  doi: 10.1002/(ISSN)1096-987X

    45. [45]

      Walton, E.; Lee, S.; Van, V. Biophys. J. 2008, 94, 2621.  doi: 10.1529/biophysj.107.114454

    46. [46]

      Calderón-Garcidueñas, L.; Mora-Tiscareño, A.; Franco-Lira, M. J. Alzheimers Dis. 2015, 45, 757.

    47. [47]

      Calderón-Garcidueñas, L.; Vojdani, A.; Blaurock-Busch, E. J. Alzheimers Dis. 2015, 43, 1039.

    48. [48]

      Li, P.; Yan, R.; Yu, S. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 2739.  doi: 10.1073/pnas.1502596112

    49. [49]

      Radic, S.; Nedumpully-Govindan, P.; Chen, R.; Salonen, E.; Brown, J. M.; Ke, P. C.; Ding, F. Nanoscale 2014, 6, 8340.  doi: 10.1039/c4nr01544d

    50. [50]

      Truong, L. Ph.D. Dissertation, Oregon State University, Oregon, 2012.

    51. [51]

      Violi, A.; Venkatnathan, A. J. Chem. Phys. 2006, 125, 054302.  doi: 10.1063/1.2234481

    52. [52]

      Kim, H.; Shin, Y. J. Am. Chem. Soc. 2010, 132, 2254.  doi: 10.1021/ja908477w

    53. [53]

      Risom, L.; Møller, P.; Loft, S. Mutat. Res. 2005, 592, 119.  doi: 10.1016/j.mrfmmm.2005.06.012

  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    3. [3]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    13. [13]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    14. [14]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    15. [15]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    20. [20]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

Metrics
  • PDF Downloads(0)
  • Abstract views(738)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return