Citation: Liu Xingfen, Wang Yateng, Huang Yanqin, Feng Xiaomiao, Fan Quli, Huang Wei. Highly Sensitive Protein Biosensor based on a Conjugated Polymer Brush[J]. Acta Chimica Sinica, ;2016, 74(8): 664-668. doi: 10.6023/A16040205 shu

Highly Sensitive Protein Biosensor based on a Conjugated Polymer Brush

  • Corresponding author: Liu Xingfen, iamxfliu@njupt.edu.cn
  • Received Date: 25 April 2016

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20141424Research Program of Nanjing University of Posts and Telecommunications NY215171Program of Scientific Innovation Research of College Graduate in Jiangsu Province CXLX12_0792the National Natural Science Foundation of China 51173080the Ministry of Education of China IRT1148the National Natural Science Foundation of China 21005040the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) BK20141424the National Basic Research Program of China 2012CB933301the National Basic Research Program of China 2012CB723402

Figures(5)

  • Simple and sensitive detection of proteins is crucial in biological analysis and medical diagnosis. Conjugated polymers (CPs) with π-conjugated backbones were recognized as having excellent light-harvesting capability and high fluorescent quantum yield. They have been widely used as an energy donor to amplify fluorescence signal via high efficient Föster resonance energy transfer (FRET). In particular, conjugated polymer brush with high charge density provides more possibilities due to stronger electrostatic interactions with negatively charged biomolecules. Here, we developed a highly sensitive protein biosensor for thrombin detection based on a conjugated polymer brush (PFNI) and a fluorescein-labeled aptamer (FAM-apt15). PFNI is a water-soluble cationic polyfluorene derivate with extremely high charge density (78 positive charges per repeat unit). PFNI can attract negatively charged aptamer through strong electrostatic interactions. In this case, the energy donor (PFNI) and acceptor (FAM) are in a close proximity, which results in an efficient FRET process and a high FRET signal. However, when the FAM-apt15 combines with the target protein, a rigid and big-sized G-quadruplex/thrombin complex formed. Due to the steric hindrance from the densely brush of PFNI, the distance between the two fluorophores increased significantly, leading to an inefficient FRET process and a low FRET signal. The strategy exhibits excellent specificity and the limit of detection (LOD) for thrombin in buffer was estimated to be 0.05 nmol/L. It also works well in diluted serum and a LOD of 0.2 nmol/L can be obtained. Compared to the biosensors based on traditional linear conjugated polymers, the sensitivity was improved by one order of magnitude. In addition, our strategy also shows the merits of simple, label-free, and low-cost because labeled DNA is much more expensive than unlabeled one. Based on the specific binding of aptamer and protein, this novel method can be extended to a highly sensitive detection of more proteins.
  • 加载中
    1. [1]

      Cera, E. D.; Dang, Q. D.; Ayala, Y. M. Cell Mol. Life Sci. 1997, 53, 701.  doi: 10.1007/s000180050091

    2. [2]

      Maragoudakis, M. E.; Tsopanoglou, N. E.; Andriopoulou, P. Biochem. Soc. T. 2002, 30, 173.  doi: 10.1042/bst0300173

    3. [3]

      Liu, C. W.; Huang, C. C.; Chang, H. T. Anal. Chem. 2009, 81, 2383.  doi: 10.1021/ac8022185

    4. [4]

      Song, W.; Zhang, Q.; Xie, X.; Zhang, S. Biosens. Bioelectron. 2014, 61, 51.  doi: 10.1016/j.bios.2014.04.030

    5. [5]

      Pavlov, V.; Xiao, Y.; Shlyahovsky, B.; Willner, I. J. Am. Chem. Soc. 2004, 126, 11768.  doi: 10.1021/ja046970u

    6. [6]

      Liang, H. R.; Hu, G. Q.; Xue, X. H.; Li, L.; Zheng, X. X.; Gao, Y. W.; Yang, S. T.; Xia, X. Z. Virus Res. 2014, 184, 7.  doi: 10.1016/j.virusres.2014.01.021

    7. [7]

      Kim, Y. S.; Song, M. Y.; Jurng, J.; Kim, B. C. Anal. Biochem. 2013, 436, 22.  doi: 10.1016/j.ab.2013.01.014

    8. [8]

      Cao, H. Y.; Yuan, A. H.; Shi, X. S.; Chen, W.; Miao, Y. Oncol. Rep. 2014, 32, 2054.

    9. [9]

      Song, Q. W.; Peng, M. S.; Wang, L.; He, D. C.; Ouyang, J. Biosens. Bioelectron. 2016, 77, 237.  doi: 10.1016/j.bios.2015.09.008

    10. [10]

      Neves Miguel, A. D.; Blaszykowski, C.; Thompson, M. Anal. Chem. 2016, 88, 3098.  doi: 10.1021/acs.analchem.5b04010

    11. [11]

      Jiang, L. Y.; Xiao, X. N.; Zhou, P. L.; Zhang, P.; Yan, Y. X.; Jiang, S. X.; Chen, Q. H. Chinese J. Anal. Chem. 2016, 44, 310.

    12. [12]

      Ge, J.; Liu, Z. F.; Zhao, X. S. Chinese J. Chem. 2012, 30, 2023.  doi: 10.1002/cjoc.201200256

    13. [13]

      Zhang, S. B.; Zheng, L. Y.; Hu, X.; Shen, G. Y.; Liu, X. W.; Shen, G. L.; Yu, R. Q. Chinese J. Anal. Chem. 2015, 43, 1688.  doi: 10.1016/S1872-2040(15)60880-5

    14. [14]

      Wu, C.; Yang, S. Y.; Wu, Z. Y.; Shen, G. L.; Yu, R. Q. Acta Chim. Sinica 2013, 71, 367.  doi: 10.6023/A12110962
       

    15. [15]

      He, F.; Tang, Y. L.; Wang, S.; Li, Y. L.; Zhu, D. B. J. Am. Chem. Soc. 2005, 127, 12343.  doi: 10.1021/ja051507i

    16. [16]

      Chen, Z. B.; Tan, L. L.; Hu, L. Y.; Zhang, Y. M.; Wang, S. X.; Lv, F. Y. ACS Appl. Mater. Inter. 2016, 8, 102.  doi: 10.1021/acsami.5b08975

    17. [17]

      Liu, X. F.; Shi, L.; Hua, X. X.; Fan, Q. L.; Chao, J.; Su, S.; Huang, Y. Q.; Wang, L. H.; Huang, W. ACS Appl. Mater. Inter. 2015, 7, 16458.  doi: 10.1021/acsami.5b03662

    18. [18]

      Kong, L.; Xu, J.; Xu, Y.; Xiang, Y.; Yuan, R.; Chai, Y. Biosens. Bioelectron. 2013, 42, 193.  doi: 10.1016/j.bios.2012.10.064

    19. [19]

      Chen, Z. B.; Tan, Y.; Zhang, C. M.; Yin, L.; Ma, H.; Ye, N. S.; Qiang, H.; Lin, Y. Q. Biosens. Bioelectron. 2014, 56, 46  doi: 10.1016/j.bios.2014.01.012

    20. [20]

      Baek, S. H.; Wark, A. W.; Lee, H. J. Anal. Chem. 2014, 86, 9824.  doi: 10.1021/ac5024183

    21. [21]

      Jiang, C. N.; Liang, A. H.; Jiang, Z. L. Acta Chim.Sinica 2011, 69, 713.
       

    22. [22]

      Le Floch, F.; Ho, H. A.; Leclerc, M. Anal. Chem. 2006, 78, 4727.  doi: 10.1021/ac0521955

    23. [23]

      Zhao, J.; Hu, S. S.; Zhong, W. D.; Wu, J. G.; Shen, Z. M.; Chen, Z.; Li. G. X. ACS Appl. Mater. Inter. 2014, 6, 7070.  doi: 10.1021/am502053d

    24. [24]

      Liu, L. Z.; Liu, Z. H.; He, Z. K.; Cai, R. X. Prog. Chem. 2006, 18, 337.

    25. [25]

      Huang, F.; Wu, H. B.; Cao, Y. Chem. Soc. Rev. 2010, 39, 2500.  doi: 10.1039/b907991m

    26. [26]

      Wang, M.; Li, C. H.; Lv, A. F.; Wang, Z. H.; Bo, Z. S. Macromolecules 2012, 45, 3017.  doi: 10.1021/ma202752h

    27. [27]

      Thomas, S. W.; Joly, G. D.; Swagger, T. M. Chem. Rev. 2007, 107, 1339.  doi: 10.1021/cr0501339

    28. [28]

      Rochat, S.; Swagger, T. M. ACS Appl. Mater. Inter. 2013, 5, 4488.  doi: 10.1021/am400939w

    29. [29]

      Zhu, C. L.; Liu, L. B.; Yang, Q.; Lv, F. T.; Wang, S. Chem. Rev. 2012, 112, 4687.  doi: 10.1021/cr200263w

    30. [30]

      Wang, M. F.; Zou, S.; Guerin, G. Macromolecules 2008, 41, 6993  doi: 10.1021/ma800777m

    31. [31]

      Pu, K. Y.; Li, K.; Liu, B. Adv. Funct. Mater. 2010, 20, 2770.  doi: 10.1002/adfm.201000495

    32. [32]

      Zhang, Z. Y.; Lu, X. M.; Fan, Q. L.; Hu, W. B.; Huang, W. Polym. Chem. 2011, 2, 2369.  doi: 10.1039/c1py00213a

    33. [33]

      Liu, X. F.; Shi, L.; Zhang, Z. Y.; Fan, Q. L.; Huang, Y. Q.; Su, S.; Fan, C. H.; Wang, L. H.; Huang, W. Analyst 2015, 140, 1842.  doi: 10.1039/C4AN02384F

    34. [34]

      Hu, W. B.; Lu, X. M.; Jiang, R. C.; Fan, Q. L.; Zhao, H.; Deng, W. X.; Zhang, L.; Huang, L.; Huang, W. Chem. Commun. 2013, 49, 9012.  doi: 10.1039/c3cc45400b

    35. [35]

      Jiang, R. C.; Lu, X. M.; Yang, M. H.; Deng, W. X.; Fan, Q. L.; Huang, W. Biomacromolecules 2013, 14, 3643.  doi: 10.1021/bm401000x

    36. [36]

      Zhang, Z. Y. Ph.D. Dissertation, Nanjing University of Posts and Telecommunications, Nanjing, 2014.

    37. [37]

      Zhang, L. B.; Zhu, J. B.; Li, T.; Wang, E. K. Anal. Chem. 2011, 83, 8871.  doi: 10.1021/ac2006763

    38. [38]

      Golub, E.; Freeman, R.; Willner, I. Anal. Chem. 2013, 85, 12126.  doi: 10.1021/ac403305k

    39. [39]

      Lin, Z. H.; Pan, D.; Hu, T. Y.; Liu, Z. P.; Su, X. G. Microchim. Acta 2015, 182, 1933.  doi: 10.1007/s00604-015-1526-4

    40. [40]

      Yang, X. H.; Wang, S. F.; Wang, K. M.; Luo, X. M.; Tan, W. H.; Cui, L. Chem. J. Chinese Univ. 2009, 30, 899.

    41. [41]

      Wang, Y. Y.; Liu, B. Langmuir 2009, 25, 12787.  doi: 10.1021/la901703p

    42. [42]

      Liu, X. F.; Shi, L.; Hua, X. X.; Huang, Y. Q.; Su, S.; Fan, Q. L.; Wang, L. H.; Huang, W. ACS Appl. Mater. Inter. 2014, 6, 3406.  doi: 10.1021/am405550j

  • 加载中
    1. [1]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(0)
  • Abstract views(861)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return