Intrinsic Chemiluminescence Production during Environmentally-friendly Advanced Oxidation of Halogenated Aromatics and Its Applications
- Corresponding author: Zhu Benzhan, bzhu@rcees.ac.cn
Citation: Zhu Benzhan, Shao Bo, Mao Li, Gao Huiying. Intrinsic Chemiluminescence Production during Environmentally-friendly Advanced Oxidation of Halogenated Aromatics and Its Applications[J]. Acta Chimica Sinica, ;2016, 74(7): 557-564. doi: 10.6023/A16040178
Zhu, B. Z.; Shan, G. Q. Chem. Res. Toxicol. 2009, 22, 969.
doi: 10.1021/tx900030v
Zhu, B. Z.; Zhu, J. G.; Fan, R. M.; Mao, L. Adv. Mol. Toxicol. 2011, 5, 1.
doi: 10.1016/B978-0-444-53864-2.00001-3
Zhu, B. Z. Chin. Sci. Bull. 2009, 54, 1673.
doi: 10.1360/972009-142
Dann, A. B.; Hontela, A. J. Appl. Toxicol. 2010, 31, 285.
de Wit, C. A. Chemosphere 2002, 46, 583.
doi: 10.1016/S0045-6535(01)00225-9
Ramamoorthy, S. Chlorinated Organic Compounds in the Environment: Regulatory and Monitoring Assessment, CRC Press, Boca Raton, FL, 1997.
Fang, X. W.; Schuchmann, H. P.; von Sonntag, C. J. Chem. Soc. Perkin. Trans. 2000, 2, 1391.
Zimbron, J. A.; Reardon, K. F. Water. Res. 2009, 43, 1831.
doi: 10.1016/j.watres.2009.01.024
Lan, Q.; Li, F.; Liu, C.; Li, X. Z. Environ. Sci. Technol. 2008, 42, 7918.
doi: 10.1021/es801220n
Gupta, S. S.; Stadler, M.; Noser, C. A.; Ghosh, A.; Steinhoff, B.; Lenoir, D.; Horwitz, C. P.; Schramm, K. W.; Collins, T. J. Science 2002, 296, 326.
doi: 10.1126/science.1069297
Sorokin, A.; Seris, J. L.; Meunier, B. Science 1995, 268, 1163.
doi: 10.1126/science.268.5214.1163
Zhang, H.; Huang, C. H. Environ. Sci. Technol. 2003, 37, 2421.
doi: 10.1021/es026190q
Zhong, Y.; Liang, X.; Zhong, Y.; Zhu, J.; Zhu, S.; Yuan, P.; He, H.; Zhang, J. Water. Res. 2012, 46, 4633.
doi: 10.1016/j.watres.2012.06.025
Peller, J.; Wiest, O.; Kamat, P. V. Chem. Eur. J. 2003, 9, 5379.
doi: 10.1002/chem.v9:21
Von Sonntag, C. Water. Sci. Technol. 2008, 58, 1015.
doi: 10.2166/wst.2008.467
Wang, J. N.; Xu, L. J. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251.
doi: 10.1080/10643389.2010.507698
Pera-Titus, M.; García-Molina, V.; Baños, M. A.; Giménez, J.; Esplugas, S. Appl. Catal. B: Environ. 2004, 47, 219.
doi: 10.1016/j.apcatb.2003.09.010
Schuster, G. B. Acc. Chem. Res. 1979, 12, 366.
doi: 10.1021/ar50142a003
Matsumoto, M. J. Photochem. Photobiol. C 2004, 5, 27.
doi: 10.1016/j.jphotochemrev.2004.02.001
Almeida de Oliveira, M.; Bartoloni, F. H.; Augusto, F. A.; Ciscato, L. F. M. L.; Bastos, E. L.; Badder, W. J. J. Org. Chem. 2012, 77, 10537.
doi: 10.1021/jo301309v
Widder, E. A. Science 2010, 328, 704.
doi: 10.1126/science.1174269
Adam, W.; Kazakov, D. V.; Kazakov, V. P. Chem. Rev. 2005, 105, 3371.
doi: 10.1021/cr0300035
Grayeski, M. L. Anal. Chem. 1987, 59, 1243A.
doi: 10.1021/ac00148a723
McCapra, F. Methods Enzymol. 2000, 305, 3.
doi: 10.1016/S0076-6879(00)05475-6
Zhou, W.; Cao, Y.; Sui, D.; Lu, C. Angew. Chem. Int. Ed. 2016, 55, 4236.
doi: 10.1002/anie.201511868
Wang, D. B.; Zhao, L. X.; Guo, L. H.; Zhang, H.; Wan, B.; Yang, Y. Acta Chim. Sinica 2015, 73, 388.
doi: 10.6023/A15010036
Li, Y.; Liu, W. N.; Zheng, X. W. Acta Chim. Sinica 2015, 73, 749.
doi: 10.6023/A15010047
Mao, L.; Liu, Y. X.; Huang, C. H.; Gao, H. Y.; Kalyanaraman, B.; Zhu, B. Z. Environ. Sci. Technol. 2015, 49, 7940.
doi: 10.1021/acs.est.5b01227
Wardman, P.; Candeias, L. P. Radiat. Res. 1996, 145, 523.
doi: 10.2307/3579270
Goldstein, S.; Meyerstein, D.; Czapski, G. Free Radic. Biol. Med. 1993, 15, 435.
doi: 10.1016/0891-5849(93)90043-T
Zhu, B. Z.; Zhao, H. T.; Kalyanaraman, B.; Liu, J.; Shan, G. Q.; Du, Y. G.; Frei, B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 3698.
doi: 10.1073/pnas.0605527104
Zhu, B. Z.; Kalyanaraman, B.; Jiang, G. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17575.
doi: 10.1073/pnas.0704030104
Zhu, B. Z.; Shan, G. Q.; Huang, C. H.; Kalyanaraman, B.; Mao, L.; Du, Y. G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 11466.
doi: 10.1073/pnas.0900065106
Zhu, B. Z.; Mao, L.; Huang, C. H.; Qin, H.; Fan, R. M.; Kalyanaraman, B.; Zhu, J. G. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 16046.
doi: 10.1073/pnas.1204479109
Zhu, B. Z.; Ren, F. R.; Mao, L.; Gao, H. Y.; Liu, Q. L.; Liu, P. Chin. Sci. Bull. 2015, 60, 1855.
doi: 10.1360/N972015-00286
Brunmark, A.; Cadenas, E. Free Radic. Biol. Med. 1987, 3, 169.
doi: 10.1016/0891-5849(87)90002-5
Weavers, L. K.; Malmstadt, N.; Hoffmann, M. R. Environ. Sci. Technol. 2000, 34, 1280.
doi: 10.1021/es980795y
Fukushima, M.; Tatsumi, K. Environ. Sci. Technol. 2001, 35, 1771.
doi: 10.1021/es001088j
Zhao, Y.; Qin, F.; Boyd, J. M.; Anichina, J.; Li, X. F. Anal. Chem. 2010, 82, 4599.
doi: 10.1021/ac100708u
Chignell, C. F.; Han, S. K.; Mouithys-Mickalad, A.; Sik, R. H.; Stadler, K.; Kadiiska, M. B. Toxicol. Appl. Pharmacol. 2008, 230, 17.Kelly, B. C.; Ikonomou, M. G.; Blair, J. D.; Morin, A. E.; Gobas, F. A. P. C. Science 2007, 317, 236.
doi: 10.1016/j.taap.2008.01.035
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Borong Yu , Huijiao Zhang , Xinyu Zhang , Xiaoying Li , Shuming Chen , Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Daojuan Cheng , Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Jiajia Li , Xiangyu Zhang , Zhihan Yuan , Zhengyang Qian , Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
Qian Shao , Jiajing Tan , Yongmei Chen , Jiyue Jing , Zhuo Wang . Exploration and Practice on the Management of Extracurricular Innovation Laboratories in Chemistry. University Chemistry, 2024, 39(4): 19-25. doi: 10.3866/PKU.DXHX202310119
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Jianmin Hao , Ruifeng Wu , Ying Wang , Yijia Bai , Xuechuan Gao , Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
Cuiping Yang , Huiping Ding , Jinpeng Hou , Kai Li , Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
(A) CL could be produced by PCP/Fe(II)-EDTA/H2O2; (B) The effects of pH on CL production; (C) The emission spectrum of CL; (D) The CL could be markedly quenched by the typical ·OH scavenger DMSO; (E) The CL production was markedly inhibited by several classic ·OH scavengers; (F) CL production was also observed with two other well-known ·OH-generating Fenton agents Fe(II)-DTPA and Fe(II)-NTA. PCP, 20 µmol/L; Fe(II)-EDTA, 1 mmol/L; H2O2, 100 mmol/L
(A) PCP, TCHQ, TCBQ and TCC. PCP, 1 mmol/L; Fe(II)-EDTA, 2 mmol/L; H2O2, 1 mmol/L; (B) DCMA. PCP, 1 mmol/L; Fe(II)-EDTA, 3 mmol/L; H2O2, 300 mmol/L
(A) TCHQ; (B) TCBQ; (C) TCC; (D) o-TCBQ. TCHQ, TCBQ, TCC, o-TCBQ, 10 µmol/L; Fe(II)-EDTA, 1 mmol/L; H2O2, 100 mmol/L
Chlorinated phenols (or non-chlorinated phenols), 10 µmol/L; Fe(II)-EDTA, 1 mmol/L; H2O2, 100 mmol/L
(A) CL profile. For BDE-79 and trichlorobiphenyl: Fe(II)-EDTA, 2 mmol/L; H2O2, 1 mol/L. For other XAr: Fe(II)-EDTA, 1 mmol/L; H2O2, 100 mmol/L.PCP, 2, 4, 6-TBP, TBBPA, triclosan, TrCBQ, 2, 3-DCNQ, PCB, 2, 4-D, 2, 4, 5-T, 30 µmol/L; HCB, trichlorobiphenyl, 200 µmol/L; BDE 79, 500 µmol/L; T3, T4, 3 µmol/L; (B) The linear range and detection limit. Fe(II)-EDTA, 1 mmol/L; H2O2, 100 mmol/L
PCP, 1 mmol/L; Fe(II)-EDTA, 3 mmol/L; H2O2, 300 mmol/L