Citation: Chen Peng, Wang Yuyang, Zhang Yu-Mo, Zhang Sean Xiao-An. Design, Synthesis and Property Study of Bispiropyran Switchable Molecule Based on Acridone[J]. Acta Chimica Sinica, ;2016, 74(8): 669-675. doi: 10.6023/A16040162 shu

Design, Synthesis and Property Study of Bispiropyran Switchable Molecule Based on Acridone

  • Corresponding author: Zhang Sean Xiao-An, seanzhang@jlu.edu.cn
  • Received Date: 1 April 2016

    Fund Project: the National Natural Science Foundation of China 51373068the National Natural Science Foundation of China 21302061China Postdoctoral Science Foundation 2012M510130Specialized Research Fund for the Doctoral Program of Higher Education 20130061120016China Postdoctoral Science Foundation 2013T60318Jilin Province Science & Technology Development Program 20140520084JH

Figures(8)

  • We designed a bispiropyran switchable molecule based on acridone. Using commercially available 3-bromoanisole and 2-amino-4-methoxybenzoic acid as starting materials, through a six-step synthetic route containing Ullmann biaryl amine condensation, Friedel-Crafts acylation, alkylation of the amine group in the resulting acridone core, regioselective double formylation at the ortho-position to the methoxy groups, demethylation of the two methoxy groups, double condensation with 1, 2, 3, 3-tetramethyl-3H-indolium iodide, the target bispiropyran switchable molecule was successfully synthesized. The UV/Vis spectra and fluorescence spectra of the target dual-switch molecule were studied. It was demonstrated that the bispiropyran molecule had obvious reversible photochromic behavior in dichloromethane solution. For more detail, the spiropyran unit of the designed molecule could be changed to the open-ring form upon UV light irradiation, and the open-ring form of the molecule could be changed to its closed-ring form again when it was placed in the dark. The molecule showed a high stability to acid in MeOH and CH2Cl2, and it had a slow acidichromic behaviour in MeCN. In addition, the molecule showed an acidichromic behaviour in MeCN/H2O solution only when the pH was below 4. However, in the above chromic process, through the UV/Vis spectra we have not found the two states containing single-ring-opened form followed by dual-ring-opened form of the designed molecule.Further study was performed through the computer simulation, and the optimal structures for the dual-ring-closed form (SP-Ac-SP), single-ring-opened form (SP-Ac-MC) and dual-ring-opened form (MC-Ac-MC) of the target molecule in the photochromic process were calculated using B3LYP/6-31g(d) in vacuum. It was found that the SP-Ac-SP was more easily directly transformed to MC-Ac-MC, because the Gibbs free energy change (ΔG1=7.2 kcal/mol) from SP-Ac-SP to SP-Ac-MC was much higher than that (ΔG2=3.5 kcal/mol) from SP-Ac-MC to MC-Ac-MC. The relevant frontier molecular orbitals for the SP-Ac-SP and MC-Ac-MC of the designed molecule calculated using B3LYP/6-31g(d) in vacuum could further explain the detail of the chromic process. Our study will give inspiration to design new type of dual-switch molecules based on conjugate structure.
  • 加载中
    1. [1]

      Wang, Z.; Xiao, Y.; Jin, H.; Tan, T.; Wang, S.; Li, X. Acta Chim. Sinica 2014, 72, 731 (in Chinese).  doi: 10.6023/A14030158
       

    2. [2]

      Feringa, B. L.; van Delden, R. A.; Koumura, N.; Geertsema, E. M. Chem. Rev. 2000, 100, 1789.  doi: 10.1021/cr9900228

    3. [3]

      Dong, H.; Zhu, H.; Meng, Q.; Gong, X.; Hu, W. Chem. Soc. Rev. 2012, 41, 1754.  doi: 10.1039/C1CS15205J

    4. [4]

      Zhang, G.; Chen, T.; Li, C.; Gong, W.; Aldred, M. P.; Zhu, M. Chin. J. Org. Chem. 2013, 33, 927 (in Chinese).  doi: 10.6023/cjoc201210006

    5. [5]

      Tan, C.; Zhao, Z.; Gao, J.; Lei, J. Acta Chim. Sinica 2012, 70, 1095 (in Chinese).  doi: 10.6023/A1110111
       

    6. [6]

      Lukyanov, B.; Lukyanova, M. Chem. Heterocycl. Compd. 2005, 41, 281.  doi: 10.1007/s10593-005-0148-x

    7. [7]

      Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741.  doi: 10.1021/cr9800715

    8. [8]

      Fischer, E.; Hirshberg, Y. J. Chem. Soc. 1952, 4522.

    9. [9]

      Lee, H. Y.; Diehn, K. K.; Sun, K.; Chen, T.; Raghavan, S. R. J. Am. Chem. Soc. 2011, 133, 8461.  doi: 10.1021/ja202412z

    10. [10]

      Shao, N.; Jin, J.; Wang, H.; Zheng, J.; Yang, R.; Chan, W.; Abliz, Z. J. Am. Chem. Soc. 2010, 132, 725.  doi: 10.1021/ja908215t

    11. [11]

      Piantek, M.; Schulze, G.; Koch, M.; Franke, K. J.; Leyssner, F.; Kruger, A.; Navio, C.; Miguel, J.; Bernien, M.; Wolf, M.; Kuch, W.; Tegeder, P.; Pascual, J. I. J. Am. Chem. Soc. 2009, 131, 12729.  doi: 10.1021/ja901238p

    12. [12]

      Krikun, V. M.; Sadimenko, L. P.; Voloshina, E. N.; Voloshin, N. A. Russ. J. Gen. Chem. 2009, 79, 1191.  doi: 10.1134/S1070363209060279

    13. [13]

      Evans, R. A.; Hanley, T. L.; Skidmore, M. A.; Davis, T. P.; Such, G. K.; Yee, L. H.; Ball, G. E.; Lewis, D. A. Nat. Mater. 2005, 4, 249.  doi: 10.1038/nmat1326

    14. [14]

      Wang, Y.; Tan, X.; Zhang, Y. M.; Zhu, S.; Zhang, I.; Yu, B.; Wang, K.; Yang, B.; Li, M.; Zou, B.; Zhang, S. X. J. Am. Chem. Soc. 2015, 137, 931.  doi: 10.1021/ja511499p

    15. [15]

      Lee, C. K.; Davis, D. A.; White, S. R.; Moore, J. S.; Sottos, N. R.; Braun, P. V. J. Am. Chem. Soc. 2010, 132, 16107.  doi: 10.1021/ja106332g

    16. [16]

      O'Bryan, G.; Wong, B. M.; McElhanon, J. R. ACS Appl. Mater. Interfaces 2010, 2, 1594.  doi: 10.1021/am100050v

    17. [17]

      Davis, D. A.; Hamilton, A.; Yang, J.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martinez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R. Nature 2009, 459, 68.  doi: 10.1038/nature07970

    18. [18]

      Raymo, F. M.; Giordani, S.; White, A. J.; Williams, D. J. J. Org. Chem. 2003, 68, 4158.  doi: 10.1021/jo0340455

    19. [19]

      Giordani, S.; Raymo, F. M. Org. Lett. 2003, 5, 3559.  doi: 10.1021/ol035237p

    20. [20]

      Raymo, F. M.; Giordani, S. J. Am. Chem. Soc. 2002, 124, 2004.  doi: 10.1021/ja016920e

    21. [21]

      Raymo, F. M. Adv. Mater. 2002, 14, 401.  doi: 10.1002/(ISSN)1521-4095

    22. [22]

      Zhou, Y.; Zhang, D.; Zhang, Y.; Tang, Y.; Zhu, D. J. Org. Chem. 2005, 70, 6164.  doi: 10.1021/jo050489k

    23. [23]

      Liu, Z. L.; Jiang, L.; Liang, Z.; Gao, Y. H. Tetrahedron Lett. 2005, 46, 885.  doi: 10.1016/j.tetlet.2004.11.164

    24. [24]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    2. [2]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(0)
  • Abstract views(826)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return