Citation: Huang Wenguang, Sun Hongfei, Zhang Shujuan. Facile Synthesis and Evaluation of Size-tunable Immobilized Laccase-mediator Microreactor[J]. Acta Chimica Sinica, ;2016, 74(6): 518-522. doi: 10.6023/A16030158 shu

Facile Synthesis and Evaluation of Size-tunable Immobilized Laccase-mediator Microreactor

  • Received Date: 30 March 2016

    Fund Project: the National Natural Science Foundation of China 21522702the National Natural Science Foundation of China 51378254

Figures(5)

  • A series of immobilized laccase-mediator microreactor (LMMR) was prepared in a one-pot process by simultaneously immobilizing Trametes versicolor laccase and acetylacetone (AA) into size-tunable chitosan copper-polyacrylamide hydrogel beads. The polymerization was induced by a laccase-AA-persulfate ternary initiating system and was finished within the chitosan beads at room temperature. The preparation conditions for the LMMR were optimized by an orthogonal array design. The method developed in this work, for the first time, realized the co-immobilization of laccase and mediator in microreactors of tunable size and mechanic strength. Experimental results from scanning electron microscopy and nitrogen adsorption-desorption analysis indicate that the resulting LMMR had a core-shell structure. Chitosan copper served as the mechanical shell, whereas polyacrylamide hydrogel was the core of three-dimensional network. Throughout the hydrogel beads, there were abundant mesopores of size in the range of 2~8 nm. The microreactor beads could endure a 20 N pressure in the axial direction, ensuring the structural integrity in the practical application in wastewater. The loading efficiency of laccase in the microreactor reached up to 93.5%. As compared with the free laccase, the LMMR showed better storage stability and higher tolerance to changes in solution pH and temperature. In the enzymatic conversion of malachite green (MG), benefited from the mediation effect of the immobilized AA, the LMMR still worked after 17 cycling runs (12 h for each cycle), which was 3-fold longer than that of a free laccase-mediator system. The successful recovery of both laccase and mediator is promising to reduce the cost for the application of laccase in wastewater treatment and might be helpful to cut down the secondary pollution from free laccase mediators. These results demonstrate that this novel one-pot synthesis was a useful strategy in the immobilization of laccase. The LMMR has a great potential in large-scale application for dyeing effluent treatment.
  • 加载中
    1. [1]

      Rahman, I. A.; Saad, B.; Shaidan, S.; Rizal, E. S. S. Bioresour. Technol. 2005, 96, 1578.  doi: 10.1016/j.biortech.2004.12.015

    2. [2]

      Berberidou, C.; Poulios, I.; Xekoukoulotakis, N. P.; Mantzavinos, D. Appl. Catal., B 2007, 74, 63.  doi: 10.1016/j.apcatb.2007.01.013

    3. [3]

      Chen, C. C.; Lu, C. S.; Chung, Y. C.; Jan, J. L. J. Hazard. Mater. 2007, 141, 520.  doi: 10.1016/j.jhazmat.2006.07.011

    4. [4]

      Song, X. J.; Wu, B. D.; Zhang, S. J. Acta Chim. Sinica 2014, 72, 461.  doi: 10.6023/A14010027
       

    5. [5]

      Pandey, A.; Singh, P.; Iyengar, L. Int. Biodeterior. Biodegrad. 2007, 59, 73.  doi: 10.1016/j.ibiod.2006.08.006

    6. [6]

      Michniewicz, A.; Ledakowicz, S.; Ullrich, R.; Hofrichter, M. Dyes Pigm. 2008, 77, 295.  doi: 10.1016/j.dyepig.2007.05.015

    7. [7]

      Huang, J.; Zhou, J. Y.; Xiao, H. Y.; Long, S. Y.; Wang, J. T. Acta Chim. Sinica 2005, 63, 1343.
       

    8. [8]

      Durán, N.; Rosa, M. A.; D'Annibale, A.; Gianfreda, L. Enzyme Microb. Technol. 2002, 31, 907.  doi: 10.1016/S0141-0229(02)00214-4

    9. [9]

      Cetinus, S. A.; Sahin, E.; Saraydin, D. Food Chem. 2009, 114, 962.  doi: 10.1016/j.foodchem.2008.10.049

    10. [10]

      Rosevear, A.; Kent, C. A.; Thomson, A. R.; Bucke, C. In Enzyme Engineering, Vol. 4, Eds.: Broun, G.; Manecke, G.; Wingard, L., Jr., Springer, US, 1978, p. 415.

    11. [11]

      Tanaka, H.; Kurosawa, H.; Kokufuta, E.; Veliky, I. A. Biotechnol. Bioeng. 1984, 26, 1393.  doi: 10.1002/(ISSN)1097-0290

    12. [12]

      de Alteriis, E.; Parascandola, P.; Pecorella, M.; Scardi, V. Biotechnol. Tech. 1988, 2, 205.  doi: 10.1007/BF01875766

    13. [13]

      Dealteriis, E.; Parascandola, P.; Salvadore, S.; Scardi, V. J. Chem. Technol. Biotechnol. 1985, 35, 60.  doi: 10.1002/(ISSN)1097-4660

    14. [14]

      Zouari-Mechichi, H.; Mechichi, T.; Dhouib, A.; Sayadi, S.; Martínez, A. T.; Martínez, M. J. Enzyme Microb. Technol. 2006, 39, 141.  doi: 10.1016/j.enzmictec.2005.11.027

    15. [15]

      Yang, H.; Sun, H. F.; Zhang, S. J.; Wu, B. D.; Pan, B. C. Environ. Sci. Pollut. Res. 2015, 22, 10882.  doi: 10.1007/s11356-015-4312-2

    16. [16]

      Sun, H. F.; Huang, W. G.; Yang, H.; Zhang, S. J. J. Colloid Interface Sci. 2016, 471, 20.  doi: 10.1016/j.jcis.2016.03.009

    17. [17]

      Daâssi, D.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Int. Biodeterior. Biodegrad. 2014, 90, 71.

    18. [18]

      Sun, H.; Yang, H.; Huang, W.; Zhang, S. J. Colloid Interface Sci. 2015, 450, 353.  doi: 10.1016/j.jcis.2015.03.037

    19. [19]

      Ikeda, R.; Tanaka, H.; Uyama, H.; Kobayashi, S. Macromol. Rapid Commun. 1998, 19, 423.  doi: 10.1002/(ISSN)1521-3927

    20. [20]

      Nakao, L. S.; Kadiiska, M. B.; Mason, R. P.; Grijalba, M. T.; Augusto, O. Free Radical Biol. Med. 2000, 29, 721.  doi: 10.1016/S0891-5849(00)00374-9

    21. [21]

      Camarero, S.; Ibarra, D.; Martinez, M. J.; Martinez, A. T. Appl. Environ. Microbiol. 2005, 71, 1775.  doi: 10.1128/AEM.71.4.1775-1784.2005

    22. [22]

      Xu, F.; Kulys, J. J.; Duke, K.; Li, K. C.; Krikstopaitis, K.; Deussen, H. J. W.; Abbate, E.; Galinyte, V.; Schneider, P. Appl. Environ. Microbiol. 2000, 66, 2052.  doi: 10.1128/AEM.66.5.2052-2056.2000

    23. [23]

      Fabbrini, M.; Galli, C.; Gentili, P. J. Mol. Catal. B: Enzym. 2002, 16, 231.  doi: 10.1016/S1381-1177(01)00067-4

  • 加载中
    1. [1]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(0)
  • Abstract views(433)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return