Research Progress in Flexible Wearable Electronic Sensors
- Corresponding author: Li Fengyu, forrest@iccas.ac.cn Song Yanlin, ylsong@iccas.ac.cn
Citation: Qian Xin, Su Meng, Li Fengyu, Song Yanlin. Research Progress in Flexible Wearable Electronic Sensors[J]. Acta Chimica Sinica, ;2016, 74(7): 565-575. doi: 10.6023/A16030156
Maheshwari, V.; Saraf, R. Angew. Chem., Int. Ed. 2008, 47, 7808.
doi: 10.1002/anie.v47:41
Tee1, B. C.-K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W.-G.; Wang, H. L.; Mei, P.; Chou, H.-H.; Cui, B. X.; Deisseroth, K.; Ng, T. N.; Bao, Z. N. Science 2015, 350, 313.
doi: 10.1126/science.aaa9306
Velliste, M.; Perel, S.; Spalding, M. C.; Whitford, A. S.; Schwartz, A. B. Nature 2008, 453, 1098.
doi: 10.1038/nature06996
Shintaku, H.; Nakagawa, T.; Kitagawa, D.; Tanujaya, H.; Kawano, S.; Ito, J. Sensor. Actuat. A-Phys. 2010, 158, 183.
doi: 10.1016/j.sna.2009.12.021
Chen, L. Y.; Tee, B. C. K.; Chortos, A. L.; Schwartz, G.; Tse, V.; Lipomi, D. J.; Wong, H. S. P.; McConnell, M. V.; Bao, Z. A. Nat. Commun. 2014, 5, 5028.
doi: 10.1038/ncomms6028
Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y.-D.; Lim, H.; Kim, S. Y.; Ko, H. ACS Nano 2014, 8, 4689;(b) Pan, L.; Chortos, A.; Yu, G.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. Nat. Commun. 2014, 5, 3002.
Li, R.-Z.; Hu, A.; Zhang, T.; Oakes, K. D. ACS Appl. Mater. Interfaces 2014, 6, 21721.
doi: 10.1021/am506987w
Pan, C.; Dong, L.; Zhu, G.; Niu, S.; Yu, R.; Yang, Q.; Liu, Y.; Wang, Z. L. Nature Photon. 2013, 7, 752.
doi: 10.1038/nphoton.2013.191
Koeppe, R.; Bartu, P.; Bauer, S.; Sariciftci, N. S. Adv. Mater. 2009, 21, 3510.
doi: 10.1002/adma.v21:34
Wang, S.; Lin, L.; Wang, Z. L. Nano Energy 2015, 11, 436.
doi: 10.1016/j.nanoen.2014.10.034
Choong, C.-L.; Shim, M.-B.; Lee, B.-S.; Jeon, S.; Ko, D.-S.; Kang, T.-H.; Bae, J.; Lee, S. H.; Byun, K.-E.; Im, J.; Jeong, Y. J.; Park, C. E.; Park, J.-J.; Chung, U. I. Adv. Mater. 2014, 26, 3451.
doi: 10.1002/adma.v26.21
Timsit, R. S. IEEE Trans. Compon. Packag. Technol. 1999, 22, 85.
doi: 10.1109/6144.759357
Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. Nat. Commun. 2014, 5, 3132.
Zhao, J.; Wang, G. L.; Yang, R.; Lu, X. B.; Cheng, M.; He, C. L.; Xie, G. B.; Meng, J. L.; Shi, D. X.; Zhang, G. Y. ACS Nano 2015, 9, 1622.
doi: 10.1021/nn506341u
Su, M.; F. Li, Y.; Chen, S. R.; Huang, Z. D.; Qin, M.; Li, W. B.; Zhang, X. Y.; Song, Y. L. Adv. Mater. 2016, 28, 1369.
doi: 10.1002/adma.v28.7
Lee, H.-K.; Chung, J.; Chang, S.-I.; Yoon, E. J. Micromech. Microeng. 2011, 21, 035010.
doi: 10.1088/0960-1317/21/3/035010
Frutiger, A.; Muth, J. T.; Vogt, D. M.; Mengüç, Y.; Campo, A.; Valentine, A. D.; Walsh, C. J.; Lewis, J. A. Adv. Mater. 2015, 27, 2440.
doi: 10.1002/adma.201500072
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Nature Nanotechnol. 2011, 6, 788.
doi: 10.1038/nnano.2011.184
Wang, Z. L.; Song, J. Science 2006, 312, 242.
doi: 10.1126/science.1124005
Graz, I.; Kaltenbrunner, M.; Keplinger, C.; Schwodiauer, R.; Bauer, S.; Lacour, S. P.; Wagner, S. Appl. Phys. Lett. 2006, 89, 073501.
doi: 10.1063/1.2335838
Dagdeviren, C.; Su, Y.; Joe, P.; Yona, R.; Liu, Y.; Kim, Y.-S.; Huang, Y.; Damadoran, A. R.; Xia, J.; Martin, L. W.; Huang, Y.; Rogers, J. A. Nat. Commun. 2014, 5, 4496.
Nour, E. S.; Sandberg, M. O.; Willander, M.; Nur, O. Nano Energy 2014, 9, 221.
doi: 10.1016/j.nanoen.2014.07.014
Zhang, X.; Hillenbrand, J.; Sessler, G. M. J. Appl. Phys. 2007, 101, 054114.
doi: 10.1063/1.2562413
Yun, S.; Park, S.; Park, B.; Kim, Y.; Park, S. K.; Nam, S.; Kyung, K.-U. Adv. Mater. 2014, 26, 4474.
doi: 10.1002/adma.v26.26
Sun, Y.; Rogers, J. A. J. Mater. Chem. 2007, 17, 832.
doi: 10.1039/b614793c
Akinwande, D.; Petrone, N.; Hone, J. Nat. Commun. 2014, 5, 5678.
doi: 10.1038/ncomms6678
Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Adv. Mater. 2012, 24, 3326.
doi: 10.1002/adma.v24.25
Sekitani, T.; Nakajima, H.; Maeda, H.; Fukushima, T.; Aida, T.; Hata, K.; Someya, T. Nature Mater. 2009, 8, 494.
doi: 10.1038/nmat2459
Brosteaux, D.; Axisa, F.; Gonzalez, M.; Vanfleteren, J. IEEE Electron Device Lett. 2007, 28, 552.
doi: 10.1109/LED.2007.897887
Zhang, Y. H.; Wang, S. D.; Li, X. T.; Fan, J. A.; Xu, S.; Song, Y. M.; Choi, K. J.; Yeo, W. H.; Lee, W.; Nazaar, S. N.; Lu, B. W.; Yin, L.; Hwang, K. C.; Rogers, J. A.; Huang, Y. G. Adv. Funct. Mater. 2014, 24, 2028.
doi: 10.1002/adfm.v24.14
Choi, W. M.; Song, J.; Khang, D.-Y.; Jiang, H.; Huang, Y. Y.; Rogers, J. A. Nano Lett. 2007, 7, 1655.
doi: 10.1021/nl0706244
Kim, D.-H.; Song, J.; Choi, W. M.; Kim, H.-S.; Kim, R.-H.; Liu, Z.; Huang, Y. Y.; Hwang, K.-C.; Zhang, Y.-W.; Rogers, J. A. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18675.
doi: 10.1073/pnas.0807476105
Fan, J. A.; Yeo, W. H.; Su, Y. W.; Hattori, Y.; Lee, W.; Jung, S. Y.; Zhang, Y. H.; Liu, Z. J.; Cheng, H. Y.; Falgout, L.; Bajema, M.; Coleman, T.; Gregoire, D.; Larsen, R. J.; Huang, Y. G.; Rogers, J. A. Nat. Commun. 2014, 5, 3266.
Jiang, J. K.; Bao, B.; Li, M. Z.; Sun, J. Z.; Zhang, C.; Li, Y.; Li, F. Y.; Yao, X.; Song, Y. L. Adv. Mater. 2016, 28, 1420.
doi: 10.1002/adma.v28.7
Park, M.; Im, J.; Shin, M.; Min, Y.; Park, J.; Cho, H.; Park, S.; Shim, M.-B.; Jeon, S.; Chung, D.-Y.; Bae, J.; Park, J.; Jeong, U.; Kim, K. Nature Nanotechnol. 2012, 7, 803.
doi: 10.1038/nnano.2012.206
Wang, X.; Zhang, H.; Yu, R.; Dong, L.; Peng, D.; Zhang, A.; Zhang, Y.; Liu, H.; Pan, C. F.; Wang, Z. L. Adv. Mater. 2015, 27, 2324.
doi: 10.1002/adma.v27.14
Park, S.; Pitner, G.; Giri, G.; Koo, J. H.; Park, K.; Kim, H.; Wang, R.; Sinclair, H. S.; Wong, P.; Bao, Z. N. Adv. Mater. 2015, 27, 2656.
doi: 10.1002/adma.v27.16
Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R.; Marder, S. R. Adv. Mater. 2011, 23, 268.
doi: 10.1002/adma.v23.2
Wang, H. L.; Wei, P.; Li, Y. X.; Han, J.; Lee, H. R.; Naab, B. D.; Liu, N.; Wang, C. G.; Adijanto, E.; Tee, B. C. K.; Morishita, S.; Li, Q. C.; Gao, Y. L.; Cui, Y.; Bao, Z. N. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 4776.
doi: 10.1073/pnas.1320045111
Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9966.
doi: 10.1073/pnas.0401918101
Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Nature Mater. 2010, 9, 859.
doi: 10.1038/nmat2834
Schwartz, G.; Tee, B. C. K.; Mei, J.; Appleton, A. L.; Kim, D. H.; Wang, H.; Bao, Z. N. Nat. Commun. 2013, 4, 1859.
doi: 10.1038/ncomms2832
Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C.-A.; Zhu, D. B. Nat. Commun. 2015, 6, 6269.
doi: 10.1038/ncomms7269
Chun, K.-Y.; Oh, Y.; Rho, J.; Ahn, J.-H.; Kim, Y.-J.; Choi, H. R.; Baik, S. Nature Nanotechnol. 2010, 5, 853.
doi: 10.1038/nnano.2010.232
Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M.; Duan, X. F.; Lee, Y. H. Nature Mater. 2013, 12, 403.
doi: 10.1038/nmat3572
Bai, C. L. Chin. Sci. Bull. 2009, 54, 1941.
Kuang, M. X.; Wang, J. X.; Wang, L. B.; Song, Y. L. Acta Chim. Sinica 2012, 70, 1889.
Sun, J. Z.; Kuang, M. X.; Song, Y. L. Prog. Chem. 2015, 27, 979.
Kuang, M. X.; Wang, L. B.; Song, Y. L. Adv. Mater. 2014, 26, 6950.
doi: 10.1002/adma.v26.40
Zhang, Z. L.; Zhang, X. Y.; Xin, Z. Q.; Deng, M. M.; Wen, Y. Q.; Song, Y. L. Adv. Mater. 2013, 25, 6714.
doi: 10.1002/adma.v25.46
Su, B.; Zhang, C.; Chen, S. R.; Zhang, X. Y.; Chen, L. F.; Wu, Y. C.; Nie, Y. W.; Kan, X. N.; Song, Y. L.; Jiang, L. Adv. Mater. 2014, 26, 2501.
doi: 10.1002/adma.v26.16
Chen, S. R.; Su, M.; Zhang, C.; Gao, M.; Bao, B.; Yang, Q.; Su, B.; Song, Y. L. Adv. Mater. 2015, 27, 3928.
doi: 10.1002/adma.201500225
Han, I. Y.; Kim, S. J. Sens. Actuators A 2008, 141, 52.
doi: 10.1016/j.sna.2007.07.020
Hattori, Y.; Falgout, L.; Lee, W.; Jung, S. Y.; Poon, E.; Lee, J. W.; Na, I.; Geisler, A.; Sadhwani, D.; Zhang, Y. H.; Su, Y. W.; Wang, X. Q.; Liu, Z. J.; Xia, J.; Cheng, H. Y.; Webb, R. C.; Bonifas, A. P.; Won, P.; Jeong, J. W.; Jang, K. I.; Song, Y. M.; Nardone, B.; Nodzenski, M.; Fan, J. A.; Huang, Y. G.; West, D. P.; Paller, A. S.; Alam, M.; Yeo, W. H.; Rogers, J. A. Adv. Healthcare Mater. 2014, 3, 1597.
doi: 10.1002/adhm.v3.10
Hong, S. Y.; Lee, Y. H.; Park, H.; Jin, S. W.; Jeong, Y. R.; Yun, J.; You, I.; Zi, G.; Ha, J. S. Adv. Mater. DOI: 10.1002/adma. 201504659.
doi: 10.1002/adma.201504659
Schwartz, G.; Tee, B. C. K.; Mei, J. G.; Appleton, A. L.; Kim, D. H.; Wang, H. L.; Bao, Z. N. Nat. Commun. 2013, 4, 1859.
doi: 10.1038/ncomms2832
Pang, C. F.; Koo, J. H.; Nguyen, A.; Caves, J. M.; Kim, M.; Chortos, A.; Kim, K.; Wang, P. J.; Tok, J. B.-H.; Bao, Z. N. Adv. Mater. 2015, 27, 634.
doi: 10.1002/adma.201403807
Belanger, M. C.; Marois, Y. J. Biomed. Mater. Res. 2001, 58, 467.
doi: 10.1002/jbm.1043
Shan, C. F.; Gong, S. G.; McOwan, P. W. Image Vision Comput. 2009, 27, 803.
doi: 10.1016/j.imavis.2008.08.005
Park, J. J.; Hyun, W. J.; Mun, S. C.; Park, Y. T.; Park, O. O. ACS Appl. Mat. Interfaces 2015, 7, 6317.
doi: 10.1021/acsami.5b00695
Ryu, S.; Lee, P.; Chou, J. B.; Xu, R.; Zhao, R.; Hart, A. J.; Kim, S.-G. ACS Nano 2015, 9, 5929.
doi: 10.1021/acsnano.5b00599
Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. Nature Nanotechnol. 2011, 6, 296.
doi: 10.1038/nnano.2011.36
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
Jin Yan , Chengxia Tong , Yajie Li , Yue Gu , Xuejian Qu , Shigang Wei , Wanchun Zhu , Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Tiantian MA , Sumei LI , Chengyu ZHANG , Lu XU , Yiyan BAI , Yunlong FU , Wenjuan JI , Haiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Xiangchun Li , Wei Xue , Xu Liu , Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
(a) piezoresistivity, (b) capacitance, (c) piezoelectricity and (d) triboelectricity
Geometric pattern design: (a) Net-shaped structural design. (b) Noncoplanar mesh design. (c) Fractal design. (d) Use of elastic conductors
(a) Schematic structure of the device. (b) Band diagram of ZnS:Mn, which indicates the action mechanism of piezophotonic effect. (c) Dynamic pressure mapping of 2D planar and single-point models. (d) Signature recording and high-resolution pressure mapping
(a) Pressure-sensitive OFET with microstructured PDMS dielectric layer. (b) Flexible pixel-type capacitive pressure sensor array using a microstructured PDMS film as a dielectric layer. (c) Change in IDS of the OFET in response to pressure, which is proportional to the change in relative capacitive and exhibits a rapid response. (d) Device geometry for ultra-sensitive detection of acoustic wave
(a) Schematic illustration of inkjet printing of silver-nanoparticle patterns induced by the coffee-ring effect. (b) A general strategy to align a wide variety of NPs in one direction upon diverse substrates based on a sandwich-shaped assembly system. (c) A nonlithography strategy to fabricate nanoscale circuits by assembling conducting materials (e.g., AgNPs) on inkjet-printing patterned substrates through a space-confined assembly system. (d) The schematic illustration of the micro/nano curve array printed to flexible electronic devices and adopted to multianalysis for skin micromotion sensing
(a) Assembly of prepared layers, liquid metal injection, and formation of electrical contacts with the Ag NW sticker. (b) Optical images of the temperature array on the stretchable substrate attached onto the right palm where a heart-shaped cold water container (≈15 ℃) was positioned after stretching. The corresponding mapping of the temperature distribution via the measurement of the normalized drain current
(a) Schematic illustration to detect pulse on a human's neck with our microhair sensor. (b) Measure pulse waves of the radial artery. (c) Cross-sectional diagram of the microhair-structured sensor. The pyramid-shaped PDMS dielectric layer was placed between the two Au electrodes on PEN plastic substrates. The pressure sensor was subsequently added on a layer of microhair-structured biocompatible polymer(PDMS) to improve conformal contacts with skin
(a) The schematic illustration of the nanoparticle self-assembly process induced by pillar-patterned template. (b) The nanocurves array chips were attached at six selective positions on facial skin, which included the characteristic muscle groups. (c) 3D representation of PCA result shows a clear clustering of the eight different facial expressions as analytes
(a) The stretchable yarns are assembled by graphene nanoparticles dispersed solution and PVA solution. The highly sensitive RY sensor was capable of detecting small-scale motions in the throat and the chest. The NCRY sensor precisely detected large-scale motion. (b) The strain sensor fabricated from dry-spun carbon nanotube (CNT) fibers exhibited a remarkably high tolerance to tensile strains (greater than 900%) along the CNT longitudinal axis, as well as high sensitivity, a fast response time, and high durability. (c) When stretched, aligned single-walled carbon nanotube (SWCNT) thin films fracture into gaps and islands, and bundles bridging the gaps. This mechanism allows the films to act as strain sensors capable of measuring strains up to 280% (50 times more than conventional metal strain gauges)