Citation: Peng Kaimei, Ding Wei, Tu Weiping, Hu Jianqing, Liu Chao, Jian Yang. Construction of Guanidinium-rich Polymers and Their Applications[J]. Acta Chimica Sinica, ;2016, 74(9): 713-725. doi: 10.6023/A16030147 shu

Construction of Guanidinium-rich Polymers and Their Applications

  • Corresponding author: Hu Jianqing, glennhu@scut.edu.cn Jian Yang, glennhu@scut.edu.cn
  • Received Date: 26 March 2016

    Fund Project: National Natural Science Foundation of China 50903031International Science & Technology Cooperation Program of Guangzhou 2012J5100043

Figures(11)

  • Antimicrobial is closely related to public life and efficient delivery of drug and gene is an indispensable means for the modern medicine. However, guanidinium-rich polymer has particular function in antimicrobial and delivery, such as the bactericidal mode of guanidinium-rich polymer is the non-specific interaction—electrostatic interaction, which is the driving force of the movement for the process of guanidinium-rich polymer getting close to the cell membrane of microbes, and from the perspective of biological evolution, which make bacterial hard to evolve resistance. On the other hand, the tight double-hydrogen bonded structure between guanidino and phosphate in the cell membrane phospholipids is the foundation for guanidinium-rich polymer exhibiting excellent performance on delivery, which will be an important grasp for the guanidinium-rich polymer and its carrying molecules entering the mammalian cell membrane. Moreover, relatively lower toxicity or nontoxicity of guanidinium-rich polymer for the mammalian cells remove the obstacle of applications. Therefore, this paper is based on available literature, sums up the fabrication methods of guanidinium-rich polymer, reviews the applications in microbial inhibition and delivery of drug or gene.
  • 加载中
    1. [1]

      Cornell, R. J.; Donaruma, L. G. J. Med Chem. 1965, 8, 388.  doi: 10.1021/jm00327a025

    2. [2]

      Vogl, O.; Tirrell, D. J. Macromol. Sci., Part A 1979, 13, 415.  doi: 10.1080/00222337908068110

    3. [3]

      Panarin, E. F.; Solovskii, M. V.; Ékzemplyarov, O. N. Pharm. Chem. J. 1971, 5, 406.  doi: 10.1007/BF00772413

    4. [4]

      Siedenbiedel, F.; Tiller, J. C. Polymers 2012, 4, 46.  doi: 10.3390/polym4010046

    5. [5]

      Gillings, M. R. Front. Microbiol. 2013, 4, 4.

    6. [6]

      Ganewatta, M. S.; Tang, C. Polymer 2015, 63, A1.  doi: 10.1016/j.polymer.2015.03.007

    7. [7]

      Wender, P. A.; Galliher, W. C.; Goun, E. A.; Jones, L. R.; Pillow, T. H. Adv. Drug Delivery Rev. 2008, 60, 452.  doi: 10.1016/j.addr.2007.10.016

    8. [8]

      Gabriel, G. J.; Som, A.; Madkour, A. E.; Eren, T.; Tew, G. N. Mater. Sci. Eng., R 2007, 57, 28.  doi: 10.1016/j.mser.2007.03.002

    9. [9]

      Onda, M.; Yoshihara, K.; Koyano, H.; Ariga, K.; Kunitake, T. J. Am. Chem. Soc. 1996, 118, 8524.  doi: 10.1021/ja960991+

    10. [10]

      Gilbert, P.; Moore, L. E. J. Appl. Microbiol. 2005, 99, 703.  doi: 10.1111/jam.2005.99.issue-4

    11. [11]

      Michl, T. D.; Locock, K. E. S.; Stevens, N. E.; Hayball, J. D.; Vasilev, K.; Postma, A.; Qu, Y.; Traven, A.; Haeussler, M.; Meagher, L.; Griesser, H. J. Polym. Chem. 2014, 5, 5813.  doi: 10.1039/C4PY00652F

    12. [12]

      Mattheis, C.; Wang, H.; Meister, C.; Agarwal, S. Macromol. Biosci. 2013, 13, 242.  doi: 10.1002/mabi.201200217

    13. [13]

      Lim, N.; Goh, D.; Bunce, C.; Xing, W.; Fraenkel, G.; Poole, T. R.; Ficker, L. Am. J. Ophthalmol. 2008, 145, 130.  doi: 10.1016/j.ajo.2007.08.040

    14. [14]

      Kima, B. R.; Andersona, J. E.; Muellera, S. A.; Gainesb, W. A.; Kendall, A. M. Water Res. 2002, 36, 4433.  doi: 10.1016/S0043-1354(02)00188-4

    15. [15]

      Motta, G. J.; Milne, C. T.; Corbett, L. Q. Ostomy Wound Manage. 2004, 50, 48.

    16. [16]

      Kawabata, A.; Taylor, J. Dyes and Pigments 2006, 68, 197.  doi: 10.1016/j.dyepig.2005.01.017

    17. [17]

      Woodcock, P. M. Industrial Biocides, John Wiley & Sons, USA, 1988.

    18. [18]

      Krebs, F. C.; Miller, S. R.; Ferguson, M. L.; Labib, M.; Rando, R. F.; Wigdahl, B. Biomed. Pharmacother. 2005, 59, 438.  doi: 10.1016/j.biopha.2005.07.007

    19. [19]

      Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, Ü. Trends Pharmacol. Sci. 2000, 21, 99.  doi: 10.1016/S0165-6147(00)01447-4

    20. [20]

      Fischer, P. M.; Krausz, E.; Lane, D. P. Bioconjugate Chem. 2001, 12, 825.  doi: 10.1021/bc0155115

    21. [21]

      Albert, M.; Feiertag, P.; Hayn, G.; Saf, R.; Honig, H. Biomacromolecules 2003, 4, 1811.  doi: 10.1021/bm0342180

    22. [22]

      Wei, D.; Ma, Q.; Guan, Y.; Hu, F.; Zheng, A.; Zhang, X.; Teng, Z.; Jiang, H. Mat. Sci. Eng. C-Mater. 2009, 29, 1776.  doi: 10.1016/j.msec.2009.02.005

    23. [23]

      Kurzer, F.; Pitchfork, E. D. Fortschr. Chem. Forsch., 1968, 10, 375.

    24. [24]

      Pregozen, D.; Park Ridge N. J. US 5141803A, 1992 [Chem. Abstr. 1991, 114, 84358].

    25. [25]

      Zhang, Y. M.; Jiang, J. M.; Chen, Y. M. Polymer 1999, 40, 6189.  doi: 10.1016/S0032-3861(98)00828-3

    26. [26]

      Lebrini, M.; Bentiss, F.; Chihib, N.-E.; Jama, C.; Hornez, J. P.; Lagrenée, M. Corros. Sci. 2008, 50, 2914.  doi: 10.1016/j.corsci.2008.07.003

    27. [27]

      Bentiss, F.; Lebrini, M.; Chihib, N.-E.; Abdalah, M.; Jama, C.; Lagrenée, M.; Al-Deyab, S. S.; Hammouti, B. Int. J. Electrochem. Sci. 2012, 7, 3947.

    28. [28]

      Li, W.; Wang, H.; Ding, Y.; Scheithauer, E. C.; Goudouri, O.-M.; Grünewald, A.; Detsch, R.; Agarwal, S.; Boccaccini, A. R. J. Mater. Chem. B 2015, 3, 3367.  doi: 10.1039/C5TB00044K

    29. [29]

      Oledzka, E.; Sokolowski, K.; Sobczak, M.; Kolodziejski, W. Polym. Int. 2011, 60, 787.

    30. [30]

      Wang, H.; Synatschke, C. V.; Raup, A.; Jérôme, V.; Freitag, R.; Agarwal, S. Polym. Chem. 2014, 5, 2453.  doi: 10.1039/c3py01467c

    31. [31]

      Schuchardt, U.; Vargas, R. M.; Gelbard, G. J. Mol. Catal. A-Chem. 1996, 109, 37.  doi: 10.1016/1381-1169(96)00014-3

    32. [32]

      Wang, J.; Li, S.; Zhang, S. Macromolecules 2010, 43, 3890.  doi: 10.1021/ma100260a

    33. [33]

      Kim, D. S.; Labouriau, A.; Guiver, M. D.; Kim, Y. S. Chem. Mater. 2011, 23, 3795.  doi: 10.1021/cm2016164

    34. [34]

      Sahariah, P.; Oskarsson, B. M.; Hjalmarsdottir, M. A.; Masson, M. Carbohydr. Polym. 2015, 127, 407.  doi: 10.1016/j.carbpol.2015.03.061

    35. [35]

      Gabriel, G. J.; Madkour, A. E.; Dabkowski, J. M.; Nelson, C. F.; Nusslein, K.; Tew, G. N. Biomacromolecules 2008, 9, 2980.  doi: 10.1021/bm800855t

    36. [36]

      Locock, K. E. S.; Michl, T. D.; Stevens, N.; Hayball, J. D.; Vasilev, K.; Postma, A.; Griesser, H. J.; Meagher, L.; Haeussler, M. ACS Macro Lett. 2014, 3, 319.  doi: 10.1021/mz5001527

    37. [37]

      Gasparini, G.; Bang, E. K.; Molinard, G.; Tulumello, D. V.; Ward, S.; Kelley, S. O.; Roux, A.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2014, 136, 6069.  doi: 10.1021/ja501581b

    38. [38]

      Funhoff, A. M.; Nostrum, C. F.; Lok, M. C.; Fretz, M. M.; Crommelin, D. J. A.; Hennink, W. E. Bioconjugate Chem. 2004, 15, 1212.  doi: 10.1021/bc049864q

    39. [39]

      Nimesh, S.; Chandra, R. Eur. J. Pharm. Biopharm. 2008, 68, 647.  doi: 10.1016/j.ejpb.2007.09.008

    40. [40]

      Bromberg, L.; Hatton, T. A. Polymer 2007, 48, 7490.  doi: 10.1016/j.polymer.2007.10.040

    41. [41]

      Cai, Z. S.; Sun, Y. M.; Zhu, X. M.; Zhao, L. L.; Yue, G. G. Polym. Bull. 2013, 70, 1085.  doi: 10.1007/s00289-012-0883-y

    42. [42]

      Zhang, Q.; Li, S.; Zhang, S. Chem. Commun. 2010, 46, 7495.  doi: 10.1039/c0cc01834a

    43. [43]

      Hu, Y.; Du, Y.; Yang, J.; Kennedy, J.; Wang, X.; Wang, L. Carbohydr. Polym. 2007, 67, 66.  doi: 10.1016/j.carbpol.2006.04.015

    44. [44]

      Kim, K. Y.; Lin, Y. T.; Mosher, H. S. Tetrahedron Lett. 1988, 29, 3183.  doi: 10.1016/0040-4039(88)85116-5

    45. [45]

      Zheng, A. N.; Guan, Y.; Wei, D. F.; Lu, H. CN 1350022, 2002 [Chem. Abstr. 2004, 140, 200279].

    46. [46]

      Zheng, A. N.; Guan, Y.; Wei, D. F.; Lu, H. EP 1486519, 2004 [Chem. Abstr. 2003, 139, 277486].

    47. [47]

      Zheng, A. N.; Guan, Y.; Wei, D. F.; Lu, H. US 7282538, 2005 [Chem. Abstr. 2003, 139, 277486].

    48. [48]

      Zheng, A. N.; Guan, Y.; Wei, D. F.; Lu, H. US 7531225, 2007 [Chem. Abstr. 2003, 139, 277486].

    49. [49]

      Zheng, A. N.; Guan, Y.; Wei, D. F.; Lu, H. CN 1351086, 2002 [Chem. Abstr. 2003, 139, 101825].

    50. [50]

      Zheng, A. N.; Guan, Y. CN 1569923, 2005 [Chem. Abstr. 2005, 144, 7557].

    51. [51]

      Guan, Y.; Xiao, H.; Sullivan, H.; Zheng, A. Carbohydr. Polym. 2007, 69, 688.  doi: 10.1016/j.carbpol.2007.02.013

    52. [52]

      Xu, X.; Zheng, A.; Zhou, X.; Guan, Y.; Pan, Y.; Xiao, H. J. Appl. Polym. Sci. 2015, 132, 42214.

    53. [53]

      Zheng, A. N.; Guan, Y.; Wei, D. F.; Lu, H. CN 1445270, 2003 [Chem. Abstr. 2003, 139, 277486].

    54. [54]

      Wang, W. G.; Zheng, A. N.; Wang, Q.; Gu, H. L.; Yuan, W. D.; Fei, H. S.; Zhang, Q.; Gan, Z. C.; Xiao, H.; Yang, G. F. CN 203449992, 2014 [Chem. Abstr. 2014, 160, 428922].

    55. [55]

      Wei, D. F.; Zheng, A. N.; Xiao, R.; Hu, F. Z. CN 101209228, 2008 [Chem. Abstr. 2008, 149, 160569].

    56. [56]

      Zheng, A. N.; Wei, D. F.; Ma, Q. X.; Hu, F. Z. CN 101210062, 2008 [Chem. Abstr. 2008, 149, 177165].

    57. [57]

      Duan, H.-F.; Guo, X.; Li, S.-H.; Lin, Y.-J.; Zhang, S.-B.; Xie, H.-B. Chin. J. Org. Chem. 2006, 26, 1335 (in Chinese). (段海峰, 郭旭, 李胜海, 林英杰, 张所波, 谢海波, 有机化学, 2006, 26, 1335.)

    58. [58]

      Cao, L.-H.; Lian, Z.-B. Acta Chim. Sinica 2007, 65, 349 (in Chinese). (曹玲华, 连召斌, 化学学报, 2007, 65, 349.)

    59. [59]

      Maccari, G.; Sanfilippo, S.; De Luca, F.; Deodato, D.; Casian, A.; Lang, M. C. D.; Zamperini, C.; Dreassi, E.; Rossolini, G. M.; Docquier, J. D.; Botta, M. Bioorg. Med. Chem. Lett. 2014, 24, 5525.  doi: 10.1016/j.bmcl.2014.09.081

    60. [60]

      Wender, P. A.; Huttner, M. A.; Staveness, D.; Vargas, J. R.; Xu, A. F. Mol. Pharm. 2015, 12, 742.  doi: 10.1021/mp500581r

    61. [61]

      Geffers, C.; Gastmeier, P. Dtsch. Arztebl. Int. 2011, 108, 87.

    62. [62]

      Fraise, A. P. J. Antimicrob. Chemoth. 2002, 49, 11.

    63. [63]

      Tashiroa, T. Macromol. Mater. Eng. 2001, 286, 63.  doi: 10.1002/(ISSN)1439-2054

    64. [64]

      Tiller, J. C.; Liao, C. J.; Lewis, K.; Klibanov, A. M. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 5981.  doi: 10.1073/pnas.111143098

    65. [65]

      Percival, A. Hosp. Pharm. 1997, 4, 193.

    66. [66]

      Kaehn, K. Skin Pharmacol. Physiol. 2010, 23, 7.  doi: 10.1159/000318237

    67. [67]

      Ikeda, T.; Tazuke, S.; Watanabe, M. Biochim. Biophys. Acta 1983, 735, 380.  doi: 10.1016/0005-2736(83)90152-9

    68. [68]

      Ikeda, T.; Ledwith, A.; Bamford, C. H.; Hann, R. A. Biochim. Biophys. Acta 1984, 769, 57.  doi: 10.1016/0005-2736(84)90009-9

    69. [69]

      Ikeda, T.; Tazuke, S.; Bamford, C. H. J. Chem. Res. 1985, 6, 180.

    70. [70]

      Ikeda, T.; Tazuke, S.; Bamford, C. H.; Ledwith, A. Bull. Chem. Soc. Jpn. 1985, 58, 705.  doi: 10.1246/bcsj.58.705

    71. [71]

      Zhou, Z. X.; Wei, D. F.; Guan, Y.; Zheng, A. N.; Zhong, J. J. J. Appl. Microbiol. 2010, 108, 898.  doi: 10.1111/jam.2010.108.issue-3

    72. [72]

      Qian, L.; Xiao, H.; Zhao, G.; He, B. ACS Appl. Mater. Interfaces 2011, 3, 1895.  doi: 10.1021/am200094u

    73. [73]

      Davies, G. E.; Francis, J.; Martin, A. R.; Rose, F. L.; Swain, G. Br. J. Pharmacol. Chemother. 1954, 9, 192.  doi: 10.1111/(ISSN)1476-5381a

    74. [74]

      Willenegger, H. Unfallchirurg 1994, 20, 94.  doi: 10.1007/BF02588150

    75. [75]

      Buxbaum, A.; Kratzer, C.; Graninger, W.; Georgopoulos, A. J. Antimicrob. Chemother. 2006, 58, 193.  doi: 10.1093/jac/dkl206

    76. [76]

      Kaehn, K.; Eberlein, T. EWMA J. 2008, 8, 13.

    77. [77]

      Qian, L. Y.; Li, X.; Sun, S. L.; Xiao, H. N. J. Biobased Mater. Bio. 2011, 5, 219.  doi: 10.1166/jbmb.2011.1137

    78. [78]

      Zhou, Z.; Zheng, A.; Zhong, J. Acta Biochim. Biophys. Sin. 2011, 43, 729.  doi: 10.1093/abbs/gmr067

    79. [79]

      Zhang, Y. W.; Chen, Y.; Zhao, J. X. Aust. J. Chem. 2014, 67, 142.  doi: 10.1071/CH13295

    80. [80]

      Wei, D.; Chen, Y.; Zhang, Y. Carbohydr. Polym. 2016, 136, 543.  doi: 10.1016/j.carbpol.2015.09.086

    81. [81]

      Pan, Y.; Xiao, H.; Zhao, G.; He, B. Polym. Bull. 2008, 61, 541.  doi: 10.1007/s00289-008-0977-8

    82. [82]

      Qian, L.; Guan, Y.; He, B.; Xiao, H. Polymer 2008, 49, 2471.  doi: 10.1016/j.polymer.2008.03.042

    83. [83]

      Nikkola, J.; Liu, X.; Li, Y.; Raulio, M.; Alakomi, H. L.; Wei, J.; Tang, C. Y. J. Membrane Sci. 2013, 444, 192.  doi: 10.1016/j.memsci.2013.05.032

    84. [84]

      Walczak, M.; Richert, A.; Burkowska-But, A. J. Ind. Microbiol. Biotechnol. 2014, 41, 1719.  doi: 10.1007/s10295-014-1505-5

    85. [85]

      Mei, Y.; Yao, C.; Li, X. Biofouling 2014, 30, 313.  doi: 10.1080/08927014.2013.871540

    86. [86]

      Tollar, M.; Štol, M.; Kliment, K. J. Biomed. Mater. Res. 1969, 3, 305.  doi: 10.1002/(ISSN)1097-4636

    87. [87]

      Quinn, K. J.; Courtney, J. M. Br. Polym. J. 1988, 20, 25.  doi: 10.1002/(ISSN)1934-256X

    88. [88]

      Sun, S.; An, Q.; Li, X.; Qian, L.; He, B.; Xiao, H. Bioresour. Technol. 2010, 101, 5693.  doi: 10.1016/j.biortech.2010.02.046

    89. [89]

      Guan, Y.; Qian, L.; Xiao, H.; Zheng, A. Cellulose 2008, 15, 609.  doi: 10.1007/s10570-008-9208-6

    90. [90]

      Ziaee, Z.; Qian, L.; Guan, Y.; Fatehi, P.; Xiao, H. J. Biomater. Sci. Polym. Ed. 2010, 21, 1359.  doi: 10.1163/092050609X12517190417795

    91. [91]

      Wei, D. F.; Zhou, R. H.; Zhang, Y. W.; Guan, Y.; Zheng, A. N. J. Appl. Polym. Sci. 2013, 130, 419.  doi: 10.1002/app.39163

    92. [92]

      Pan, Y.; Xiao, H.; Cai, P.; Colpitts, M. Carbohydr. Polym. 2016, 135, 94.  doi: 10.1016/j.carbpol.2015.08.046

    93. [93]

      Wei, D.; Zhou, R.; Guan, Y.; Zheng, A.; Zhang, Y. J. Appl. Polym. Sci. 2013, 127, 666.  doi: 10.1002/app.37849

    94. [94]

      Zhang, D.; Xiao, H. ACS Appl. Mater. Interfaces 2013, 5, 3464.  doi: 10.1021/am400585m

    95. [95]

      Wang, H.; Wei, D.; Ziaee, Z.; Xiao, H.; Zheng, A.; Zhao, Y. Ind. Eng. Chem. Res. 2015, 54, 1824.  doi: 10.1021/ie504393t

    96. [96]

      Li, S.; Wei, D.; Guan, Y.; Zheng, A. Eur. Polym. J. 2014, 51, 120.  doi: 10.1016/j.eurpolymj.2013.12.004

    97. [97]

      Ikeda, T.; Yamaguchi, H.; Tazuke, S. Antimicrob. Agents Chemother. 1984, 26, 139.  doi: 10.1128/AAC.26.2.139

    98. [98]

      Locock, K. E.; Michl, T. D.; Valentin, J. D.; Vasilev, K.; Hayball, J. D.; Qu, Y.; Traven, A.; Griesser, H. J.; Meagher, L.; Haeussler, M. Biomacromolecules 2013, 14, 4021.  doi: 10.1021/bm401128r

    99. [99]

      Casal, E.; Corzo, N.; Moreno, F. J.; Olano, A. J. Agric. Food Chem. 2005, 53, 1201.  doi: 10.1021/jf040256e

    100. [100]

      Hsieh, C. Y.; Hsieh, H. J.; Liu, H. C.; Wang, D. M.; Hou, L. T. Dent. Mater. 2006, 22, 622.  doi: 10.1016/j.dental.2005.05.012

    101. [101]

      Tapia, C.; Corbalán, V.; Costa, E.; Gai, M. N.; Yazdani-Pedram, M. Biomacromolecules 2005, 6, 2389.  doi: 10.1021/bm050227s

    102. [102]

      Batista, M. K. S.; Pinto, L. F.; Gomes, C. A. R.; Gomes, P. Carbohydr. Polym. 2006, 64, 299.  doi: 10.1016/j.carbpol.2005.11.040

    103. [103]

      Jung, E. J.; Youn, D. K.; Lee, S. H.; No, H. K.; Ha, J. G.; Prinyawiwatkul, W. Int. J. Food Sci. Tech. 2010, 45, 676.  doi: 10.1111/j.1365-2621.2010.02186.x

    104. [104]

      Rúnarsson, Ö. V.; Holappa, J.; Nevalainen, T.; Hjálmarsdóttir, M.; Järvinen, T.; Loftsson, T.; Einarsson, J. M.; Jónsdóttir, S.; Valdimarsdóttir, M.; Másson, M. Eur. Polym. J. 2007, 43, 2660.  doi: 10.1016/j.eurpolymj.2007.03.046

    105. [105]

      Liu, W. G.; Zhang, J. R.; Cao, Z. Q.; Xu, F. Y.; Yao, K. D. J. Mater. Sci-Mater. M. 2004, 15, 1199.  doi: 10.1007/s10856-004-5672-1

    106. [106]

      Xiao, B.; Wan, Y.; Zhao, M.; Liu, Y.; Zhang, S. Carbohydr. Polym. 2011, 83, 144.  doi: 10.1016/j.carbpol.2010.07.032

    107. [107]

      Zhu, D.; Zhang, H.; Bai, J.; Liu, W.; Leng, X.; Song, C.; Yang, J.; Li, X.; Jin, X.; Song, L.; Liu, L.; Li, X.; Zhang, Y.; Yao, K. Chinese Sci. Bull. 2007, 52, 3207.  doi: 10.1007/s11434-007-0455-y

    108. [108]

      Liu, L.; Bai, Y.; Song, C. Zhu, D.; Song, L.; Zhang, H.; Dong, X.; Leng, X. J. Nanopart. Res. 2009, 12, 1637.

    109. [109]

      Tang, H.; Zhang, P.; Kieft, T. L.; Ryan, S. J.; Baker, S. M.; Wiesmann, W. P.; Rogelj, S. Acta Biomater. 2010, 6, 2562.  doi: 10.1016/j.actbio.2010.01.002

    110. [110]

      Zhai, X.; Sun, P.; Luo, Y.; Ma, C.; Xu, J.; Liu, W. J. Appl. Polym. Sci. 2011, 121, 3569.  doi: 10.1002/app.34156

    111. [111]

      Zhao, X.; Qiao, Z. Z.; He, J. X. J. Eng. Fiber. Fabr. 2010, 5, 16.

    112. [112]

      Zhao, X.; He, J. X.; Zhan, Y. Z. Polym. J. 2009, 41, 1030.  doi: 10.1295/polymj.PJ2009087

    113. [113]

      Cai, Z. S.; Sun, Y. M., Yang, C. S.; Zhu, X. M. J. Appl. Polym. Sci. 2012, 125, 1146.  doi: 10.1002/app.v125.2

    114. [114]

      Sang, W.; Tang, Z.; He, M. Y.; Hua, Y. P.; Xu, Q. Int. J. Biol. Macromol. 2015, 75, 489.  doi: 10.1016/j.ijbiomac.2015.01.009

    115. [115]

      Budhathoki-Uprety, J.; Peng, L.; Melander, C.; Novak, B. M. ACS Macro Lett. 2012, 1, 370.  doi: 10.1021/mz200116k

    116. [116]

      Liu, K.; Xu, Y.; Lin, X.; Chen, L.; Huang, L.; Cao, S.; Li, J. Carbohydr. Polym. 2014, 110, 382.  doi: 10.1016/j.carbpol.2014.03.086

    117. [117]

      Groll, A. H.; Lumb, J. Future Microbiol. 2012, 7, 179.  doi: 10.2217/fmb.11.154

    118. [118]

      Kyle, A. A.; Dahl, M. V. Am. J. Clin. Dermatol. 2004, 5, 443.  doi: 10.2165/00128071-200405060-00009

    119. [119]

      Klepser, M. E. Pharmacotherapy 2006, 26, 68S.  doi: 10.1592/phco.26.6part2.68S

    120. [120]

      Manetti, F.; Castagnolo, D.; Raffi, F.; Zizzari, A. T.; Rajamaki, S.; D'Arezzo, S.; Visca, P.; Cona, A.; Fracasso, M. E.; Doria, D.; Posteraro, B.; Sanguinetti, M.; Fadda, G.; Botta, M. J. Med. Chem. 2009, 52, 7376.  doi: 10.1021/jm900760k

    121. [121]

      Sanguinetti, M.; Sanfilippo, S.; Castagnolo, D.; Sanglard, D.; Posteraro, B.; Donzellini, G.; Botta, M. ACS Med. Chem. Lett. 2013, 4, 852.  doi: 10.1021/ml400187w

    122. [122]

      Wilkinson, R. A.; Pincus, S. H.; Shepard, J. B.; Walton, S. K.; Bergin, E. P.; Labib, M.; Teintze, M. Antimicrob. Agents Chemother. 2011, 55, 255.  doi: 10.1128/AAC.00709-10

    123. [123]

      Thakkar, N.; Pirrone, V.; Passic, S.; Keogan, S.; Zhu, W.; Kholodovych, V.; Welsh, W.; Rando, R.; Labib, M.; Wigdahl, B.; Krebs, F. C. Antimicrob. Agents Chemother. 2010, 54, 1965.  doi: 10.1128/AAC.00934-09

    124. [124]

      Pan, Y.; Xue, Y.; Snow, J.; Xiao, H. Macromol. Chem. Phys. 2015, 216, 511.  doi: 10.1002/macp.v216.5

    125. [125]

      Schmidt, N.; Mishra, A.; Lai, G. H.; Wong, G. C. FEBS Lett. 2010, 584, 1806.  doi: 10.1016/j.febslet.2009.11.046

    126. [126]

      Schug, K. A.; Lindner, W. Chem. Rev. 2005, 105, 67.  doi: 10.1021/cr040603j

    127. [127]

      Schmidt, N. W.; Lis, M.; Zhao, K.; Lai, G. H.; Alexandrova, A. N.; Tew, G. N.; Wong, G. C. J. Am. Chem. Soc. 2012, 134, 19207.  doi: 10.1021/ja308459j

    128. [128]

      Wender, P. A.; Mitchell, D. J.; Pattabiraman, K.; Pelkey, E. T.; Steinman, L.; Rothbard, J. B. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 13003.  doi: 10.1073/pnas.97.24.13003

    129. [129]

      Tung, C. H.; Weissleder, R. Adv. Drug Delivery Rev. 2003, 55, 281.  doi: 10.1016/S0169-409X(02)00183-7

    130. [130]

      Wender, P. A.; Rothbard, J. B.; Jessop, T. C.; Kreider, E. L.; Wylie, B. L. J. Am. Chem. Soc. 2002, 124, 13382.  doi: 10.1021/ja0275109

    131. [131]

      Cooley, C. B.; Trantow, B. M.; Nederberg, F.; Kiesewetter, M. K.; Hedrick, J. L.; Waymouth, R. M.; Wender, P. A. J. Am. Chem. Soc. 2009, 131, 16401.  doi: 10.1021/ja907363k

    132. [132]

      Green, M.; Loewenstein, P. M. Cell 1988, 55, 1179.  doi: 10.1016/0092-8674(88)90262-0

    133. [133]

      Bang, E. K.; Gasparini, G.; Molinard, G.; Roux, A.; Sakai, N.; Matile, S. J. Am. Chem. Soc. 2013, 135, 2088.  doi: 10.1021/ja311961k

    134. [134]

      Elbashir, S. M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tusch, T. Nature 2001, 411, 494.  doi: 10.1038/35078107

    135. [135]

      Davidson, B. L.; McCray, P. B. Nat. Rev. Genet. 2011, 12, 329.  doi: 10.1038/nrg2968

    136. [136]

      Geihe, E. I.; Cooley, C. B.; Simon, J. R.; Kiesewetter, M. K.; Edward, J. A.; Hickerson, R. P.; Kaspar, R. L.; Hedrick, J. L.; Waymouth, R. M.; Wender, P. A. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 13171.  doi: 10.1073/pnas.1211361109

    137. [137]

      Ono, R. J.; Lee, A. L. Z.; Chin, W.; Goh, W. S.; Lee, A. Y. L.; Yang, Y. Y.; Hedrick, J. L. ACS Macro Lett. 2015, 4, 886.  doi: 10.1021/acsmacrolett.5b00527

    138. [138]

      deRonde, B. M.; Torres, J. A.; Minter, L. M.; Tew, G. N. Biomacromolecules 2015, 16, 3172.  doi: 10.1021/acs.biomac.5b00795

    139. [139]

      Rutz, S.; Scheffold, A. Arthritis Res. Ther. 2004, 6, 78.

    140. [140]

      Mantei, A.; Rutz, S.; Janke, M.; Kirchhoff, D.; Jung, U.; Patzel, V.; Voge, U.; Rudel, T.; Andreou, I.; Weber, M.; Scheffold, A. Eur. J. Immunol. 2008, 38, 2616.  doi: 10.1002/eji.200738075

    141. [141]

      Freeley, M.; Long, A. Biochem. J. 2013, 455, 133.  doi: 10.1042/BJ20130950

    142. [142]

      Treat, N. J.; Smith, D.; Teng, C.; Flores, J. D.; Abel, B. A.; York, A. W.; Huang, F.; McCormick, C. L. ACS Macro Lett. 2012, 1, 100.  doi: 10.1021/mz200012p

    143. [143]

      Tabujew, I.; Freidel, C.; Krieg, B.; Helm, M.; Koynov, K.; Mullen, K.; Peneva, K. Macromol. Rapid Commun. 2014, 35, 1191.  doi: 10.1002/marc.v35.13

    144. [144]

      Mumper, R. J.; Wang, J.; Claspell, J. M.; Rolland, A. P. Proceedings of the 22nd International Symposium on Controlled Release of Bioactive Materials, Elsevier, Amsterdam, 1995, 22, 178.

    145. [145]

      Kim, T. H.; Jiang, H. L.; Jere, D.; Park, I. K.; Cho, M. H.; Nah, J. W.; Choi, Y. J.; Akaike, T.; Cho, C. S. Prog. Polym. Sci. 2007, 32, 726.  doi: 10.1016/j.progpolymsci.2007.05.001

    146. [146]

      Kolonko, E. M.; Kiessling, L. L. J. Am. Chem. Soc. 2008, 130, 5626.  doi: 10.1021/ja8001716

    147. [147]

      Kim, S. H.; Jeong, J. H.; Kim, T.; Kim, S. W.; Bull, D. A. Mol. Pharm. 2008, 6, 718.

    148. [148]

      Wender, P. A.; Kreider, E.; Pelkey, E. T.; Rothbard, J.; VanDeusen, C. L. Org. Lett. 2005, 7, 4815.  doi: 10.1021/ol051496y

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(4066)
  • HTML views(1213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return