Citation: Zhang Jiayu, Zhou Xiaoyu, Zhou Man, Jia Hongxia. Detection of Telomerase Activity Based on Signal Amplification of Hybridization Chain Reaction Combining with Magnetic Separation[J]. Acta Chimica Sinica, ;2016, 74(6): 513-517. doi: 10.6023/A16030136 shu

Detection of Telomerase Activity Based on Signal Amplification of Hybridization Chain Reaction Combining with Magnetic Separation

  • Corresponding author: Jia Hongxia, jia123renren@126.com
  • Received Date: 18 March 2016

    Fund Project: the Specialized Research Fund for the Doctoral Program of Higher Education of China 20121301120006the National Natural Science Foundation of China 21405032

Figures(5)

  • Telomerase is a ribonucleoprotein complex that is usually activated in the cancer cells and is closely related to telomere maintenance and immortalization of cancer cells. Telomerase activity detection is important for early diagnosis of human cancers as well as the screening of telomerase-target anti-cancer drugs. A new simple and fast method to detect the telomerase activity has been developed based on hybridization chain reaction (HCR) and magnetic separation. In the assay of experiment, the biotin-labeled telomerase substrate is elongated by telomerase generating a special DNA with repeated sequences-(ggttag)n at their terminals. These telomerase elongated products are fixedly connected with streptavidin-coated magnetic beads through the specific combination of streptavidin with biotin. At the same time, other cell extracts are removed by magnetic separation. A specific DNA probe I is designed as the initiator of HCR. 3'-Terminus of DNA probe I is complementary with three repeated sequences of telomerase elongated product. So, DNA probe I could be fixed on magnetic bead through hybridization. 5'-Terminus of DNA probe I is in charge of triggering HCR with DNA probe II and probe III. DNA probe II and probe III are modified with fluorophores. So, the HCR amplification results can be easily detected by fluorescence. All of excessive DNA probes can be removed by magnetic separation. Under the optimal conditions, telomerase activity in 1.0×105 Hela cells has been obviously detected. Because no enzyme involves in the signal amplification process of HCR, our proposed method can effectively avoid the interference of nonspecific amplification which usually exists in the polymerase amplification processes and increase the accuracy of the test results. Furthermore, enzyme-free signal amplification can effectively avoid the potential interference of telomerase inhibitor to the enzyme activity and improve the reliability of screening of telomerase inhibitors.
  • 加载中
    1. [1]

      Cohen, S. B.; Graham, M. E.; Lovrecz, G. O.; Bache, N.; Robinson, P. J.; Reddel, R. R. Science 2007, 315, 1850.  doi: 10.1126/science.1138596

    2. [2]

      Feng, J. L.; Funk, W. D.; Wang, S. S.; Weinrich, S. L.; Avilion, A. A.; Chiu, C. P.; Adams, R. R.; Chang, E.; Allsopp, R. C.; Yu, J. H.; Le, S. Y.; West, M. D.; Harley, C. B.; Andrews, W. H.; Greider, C. W.; Villeponteau, B. Science 1995, 269, 1236.  doi: 10.1126/science.7544491

    3. [3]

      Liu, Y.; Chen, X. M.; Zhang, L. Q.; Sun, D. D.; Zhou, Y. H.; Chen, L. M.; Liu, J. Acta Chim. Sinica 2014, 72, 473.  doi: 10.6023/A13101092
       

    4. [4]

      Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, W. P. L. C.; Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W. Science 1994, 266, 2011.  doi: 10.1126/science.7605428

    5. [5]

      Kim, N. W.; Wu, F. Nucleic Acids Res. 1997, 25, 2595.  doi: 10.1093/nar/25.13.2595

    6. [6]

      Szatmari, I.; Tőkés, S.; Dunn, C. B.; Bardos, T. J.; Aradi, J. Anal. Biochem. 2000, 282, 80.  doi: 10.1006/abio.2000.4589

    7. [7]

      Szatmari, I.; Aradi, J. Nucleic Acids Res. 2001, 29, e3.  doi: 10.1093/nar/29.2.e3

    8. [8]

      Wege, H.; Chui, M. S.; Le, H. T.; Tran, J. M.; Zern, M. A. Nucleic Acids Res. 2003, 31, e3.

    9. [9]

      Xiao, Y.; Dane, K. Y.; Uzawa, T.; Csordas, A.; Qian, J. R.; Soh, H. T.; Daugherty, P. S.; Lagally, E. T.; Heeger, A. J.; Plaxco, K. W. J. Am. Chem. Soc. 2010, 132, 15399.  doi: 10.1021/ja107085n

    10. [10]

      Huang, Y. P.; Kong, D. M.; Zhang, X. B.; Shen, H. X.; Mi, H. F. Acta Chim. Sinica 2004, 62, 274.
       

    11. [11]

      Van Ness, J.; Van Ness, L. K.; Galas, D. J. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4504.  doi: 10.1073/pnas.0730811100

    12. [12]

      Zhang, Y.; Wang, L. J.; Zhang, C. Y. Chem. Commun. 2014, 50, 1909.  doi: 10.1039/c3cc48518h

    13. [13]

      Tian, L. L.; Weizmann, Y. J. Am. Chem. Soc. 2013, 135, 1661.  doi: 10.1021/ja309198j

    14. [14]

      Ding, C. F.; Li, X. L.; Ge, Y.; Zhang, S. S. Anal. Chem. 2010, 82, 2850.  doi: 10.1021/ac902818w

    15. [15]

      Zhao, Y. X.; Qi, L.; Chen, F.; Zhao, Y.; Fan, C. H. Biosens. Bioelectron. 2013, 41, 764.  doi: 10.1016/j.bios.2012.10.009

    16. [16]

      Dirks, R. M.; Pierce, N. A. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 15275.  doi: 10.1073/pnas.0407024101

    17. [17]

      Niu, S. Y.; Jiang, Y.; Zhang, S. S. Chem. Commun. 2010, 46, 3089.  doi: 10.1039/c000166j

    18. [18]

      Chen, Y.; Xu, J.; Su, J.; Xiang, Y.; Yuan, R.; Chai, Y. Q. Anal. Chem. 2012, 84, 7750.  doi: 10.1021/ac3012285

    19. [19]

      Ge, Z. L.; Lin, M. H.; Wang, P.; Pei, H.; Yan, J.; Shi, J. Y.; Huang, Q.; He, D. N.; Fan, C. H.; Zuo, X. L. Anal. Chem. 2014, 86, 2124.  doi: 10.1021/ac4037262

    20. [20]

      Yang, L.; Liu, C. H.; Ren, W.; Li, Z. P. ACS Appl. Mater. Interfaces 2012, 4, 6450.  doi: 10.1021/am302268t

    21. [21]

      Zhang, B.; Liu, B. Q.; Tang, D. P.; Niessner, R.; Chen, G. N.; Knopp, D. Anal. Chem. 2012, 84, 5392.  doi: 10.1021/ac3009065

    22. [22]

      Wang, W. J.; Li, J. J.; Rui, K.; Gai, P. P.; Zhang, J. R.; Zhu, J. J. Anal. Chem. 2015, 87, 3019.  doi: 10.1021/ac504652e

    23. [23]

      Eskiocak, U.; Ozkan-Ariksoysal, D.; Ozsoz, M.; Öktem, H. A. Anal. Chem. 2007, 79, 8807.  doi: 10.1021/ac071014r

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    6. [6]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    7. [7]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    8. [8]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    11. [11]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    12. [12]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    13. [13]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    20. [20]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

Metrics
  • PDF Downloads(0)
  • Abstract views(2761)
  • HTML views(629)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return