Citation: Yuan Pei, Chen Jian, Pan Deng, Bao Xiaojun. Adsorption and Reaction Kinetic Studies of the Heterogeneous Catalytic Hydrogenation for Polystyrene[J]. Acta Chimica Sinica, ;2016, 74(7): 603-611. doi: 10.6023/A16030117 shu

Adsorption and Reaction Kinetic Studies of the Heterogeneous Catalytic Hydrogenation for Polystyrene

  • Corresponding author: Yuan Pei, yuanpei@cup.edu.cn
  • Received Date: 4 March 2016

    Fund Project: China National Petroleum Corp. 2012B-2805The National Natural Science Foundation of China 21106182The National Natural Science Foundation of China 21576290

Figures(10)

  • We applied silica hollow microspheres with through holes in the shell as supports to prepare Pd-based supported catalyst (Pd/SHMs) for heterogeneous catalytic hydrogenation of polystyrene (PS) and also systematically studied the adsorption and reaction behavior of PS molecules over Pd/SHMs. The dynamic adsorption and reaction models of PS molecules under different temperatures have been established and the partially hydrogenated products were also comprehensively analyzed. The result shows that both the adsorption capacity and saturation time are increased as the temperature increasing and this hydrogenation reaction is confirmed to be a first-order reaction and the activation energy is calculated to be 58.3 kJ·mol-1. After separating and purifying three samples with different hydrogenation degrees, we further analyzed the partially hydrogenated products and the results show that they are all actually comprised of two kinds of substances with different properties, one with high hydrogenation conversion rate (ca. 85%) and the other with low hydrogenation ratio (ca. 25%). It is proved that PS heterogeneous hydrogenation process exists secondary adsorption and competitive adsorption phenomenon, and obeys the Blocky mechanism. This work lays the foundation for PS adsorption and hydrogenation reaction and is also favorable for the understanding of the adsorption and catalytic process for other unsaturated polymers over heterogeneous catalysts.
  • 加载中
    1. [1]

      Singha, N. K.; Bhattacharjee, S.; Sivaram, S. Rubber Chem. Technol. 1997, 70, 311.

    2. [2]

      Xu, Z. D.; Hadjichristidis, N.; Carella, J. M.; Fetters, L. J. Macromolecules 1983, 16, 925.  doi: 10.1021/ma00240a019

    3. [3]

      Dondos, A.; Staikos, G. Colloid Polym. Sci. 1995, 273, 626.  doi: 10.1007/BF00652254

    4. [4]

      Garcia Escribiano, P.; Canovas, M. J.; Ojeda, M. C.; Del Rio, C.; Sanchez, F.; Acosta, J. L. Polym. Int. 2011, 60, 493.  doi: 10.1002/pi.v60.3

    5. [5]

      Wei, Z. L.; Wu, J. L.; Pan, Q. M.; Rempel, G. L. Macromol. Rapid Commun. 2005, 26, 1768.  doi: 10.1002/(ISSN)1521-3927

    6. [6]

      Monroy-Barreto, M.; Acosta, J. L.; Del Rio, C.; Ojeda, M. C.; Munoz, M.; Aguilar, J. C. J. Power Sources 2010, 195, 8052.  doi: 10.1016/j.jpowsour.2010.06.105

    7. [7]

      Jin, M.; Liao, M.; Zhai, J.; Jiang, L. Acta Chim. Sinica 2008, 66, 145.
       

    8. [8]

      Xu, L.; Li, W.; Yang, M. Acta Chim. Sinica 2007, 65, 1917.
       

    9. [9]

      Zhang, S.; Bai, Y.; Peng, J.; Hu, Y.; Lai, G. Prog. Chem. 2013, 25, 707.

    10. [10]

      Przybyszewska, M.; Zaborski, M. Composite Interfaces 2009, 16, 131.  doi: 10.1163/156855409X402920

    11. [11]

      Yoon, K.; Kim, K. O.; Schaefer, M.; Yoon, D. Y. Polymer 2012, 53, 2290.  doi: 10.1016/j.polymer.2012.02.047

    12. [12]

      Choi, M.; Kim, Y.; Ha, C. Prog. Polym. Sci. 2008, 33, 581.  doi: 10.1016/j.progpolymsci.2007.11.004

    13. [13]

      Gehlsen, M. D.; Bates, F. S. Macromolecules 1993, 26, 4122.  doi: 10.1021/ma00068a009

    14. [14]

      Huang, H.; Fan, Y.; Tao, S.; Gao, H. New Chem. Mater. 2013, 41, 178.

    15. [15]

      Ness, J. S.; Brodil, J. C.; Bates, F. S.; Hahn, S. F.; Hucul, D. A.; Hillmyer, M. A. Macromolecules 2001, 35, 602.

    16. [16]

      Dong, L. B.; Turgman-Cohen, S.; Roberts, G. W.; Kiserow, D. J. Ind. Eng. Chem. Res. 2010, 49, 11280.  doi: 10.1021/ie1011905

    17. [17]

      Xu, D.; Carbonell, R. G.; Kiserow, D. J.; Roberts, G. W. Ind. Eng. Chem. Res. 2003, 42, 3509.  doi: 10.1021/ie0301841

    18. [18]

      Hucul, D. A.; Hahn, S. F. Adv. Mater. 2000, 12, 1855.  doi: 10.1002/(ISSN)1521-4095

    19. [19]

      Aylward, F.; Sawistowka, M.; Arthur, F.; Robert, C. B.; Shirley, H. Chem. Rev. 1965, 65, 51.  doi: 10.1021/cr60233a002

    20. [20]

      Parent, J. S.; Mcmanus, N. T.; Rempel, G. L. Ind. Eng. Chem. Res. 1996, 35, 4417.  doi: 10.1021/ie9506680

    21. [21]

      Martin, P.; Mcmanus, N. T.; Rempel, G. L. J. Mol. Catal. A: Chem. 1997, 126, 115.  doi: 10.1016/S1381-1169(97)00102-7

    22. [22]

      Bhattacharjee, S.; Bhowmick, A. K.; Avasthi, B. N. J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 471.  doi: 10.1002/pola.1992.080300314

    23. [23]

      Bond, G. C. Heterogeneous Catalysis: Principles and Applications, 2nd Ed., Clarendon Press, Oxford, 1987, p. 120.

    24. [24]

      Bussard, A.; Dooley, K. M. AIChE J. 2008, 54, 1064.  doi: 10.1002/(ISSN)1547-5905

    25. [25]

      Zhou, H.; Qiang, M.; Li, J.; Li, Y.; Wang, J. Polym. Mater. Sci. Eng. 2011, 27, 73.

    26. [26]

      Almusaiteer, K. A. Top. Catal. 2012, 55, 498.  doi: 10.1007/s11244-012-9821-3

    27. [27]

      Hutchings, G. J. J. Mater. Chem. 2009, 19, 1222.  doi: 10.1039/B812300B

    28. [28]

      Fang, F.; Satulovsky, J.; Szleifer, I. Biophys. J. 2005, 89, 1516.  doi: 10.1529/biophysj.104.055079

    29. [29]

      Rosedale, J. H.; Bates, F. S. J. Am. Chem. Soc. 1988, 110, 3542.  doi: 10.1021/ja00219a032

    30. [30]

      Huang, H.; Zhou, J.; Ying, Q.; Tao, S. Mod. Chem. Ind. 2014, 34, 70.

    31. [31]

      Cassano, G. A.; Vallés, E. M.; Quinzani, L. M. Polymer 1998, 39, 5573.  doi: 10.1016/S0032-3861(97)10080-5

    32. [32]

      Tsukagoshi, T.; Kondo, Y.; Yoshino, N. Colloids Surf. B-Biointerfaces 2007, 54, 101.  doi: 10.1016/j.colsurfb.2006.10.004

    33. [33]

      Linse, P.; Kallrot, N. Macromolecules 2010, 43, 2054.  doi: 10.1021/ma902338m

    34. [34]

      Kawaguchi, M.; Anada, S.; Nishikawa, K.; Kurata, N. Macromolecules 1992, 25, 1588.  doi: 10.1021/ma00031a035

    35. [35]

      Kawaguchi, M.; Sakata, Y.; Anada, S.; Kato, T.; Takahashi, A. Langmuir 1994, 10, 538.  doi: 10.1021/la00014a033

    36. [36]

      Rybicka, J.; Sikorski, A. Macromol. Theory Simul. 2010, 19, 135.

    37. [37]

      Scheutjens, J. M. H. M.; Fleer, G. J. J. Phys. Chem. 1979, 83, 1619.  doi: 10.1021/j100475a012

    38. [38]

      Scheutjens, J. M. H. M.; Fleer, G. J. J. Phys. Chem. 1980, 84, 178.  doi: 10.1021/j100439a011

    39. [39]

      Doi, Y.; Yano, A.; Soga, K.; Burfield, D. R. Macromolecules 1986, 19, 2409.  doi: 10.1021/ma00163a013

    40. [40]

      Tangthongkul, R.; Prasassarakich, P.; Mcmanus, N. T.; Rempel, G. L. J. Appl. Polym. Sci. 2004, 91, 3259.  doi: 10.1002/(ISSN)1097-4628

    41. [41]

      Hinchiranan, N.; Charmondusit, K.; Prasassarakich, P.; Rempel, G. L. J. Appl. Polym. Sci. 2006, 100, 4219.  doi: 10.1002/(ISSN)1097-4628

    42. [42]

      Pan, D.; Shi, G.; Zhang, T.; Yuan, P.; Fan, Y.; Bao, X. J. Mater. Chem. A 2013, 1, 9597.  doi: 10.1039/c3ta11824j

    43. [43]

      Dijt, J. C.; Cohen Stuart, M. A.; Fleer, G. J. Macromolecules 1994, 27, 3207.  doi: 10.1021/ma00090a014

    44. [44]

      Kislenko, V. N.; Berlin, A. A.; Kawaguchi, M.; Kato, T. Langmuir 1996, 12, 768.  doi: 10.1021/la950478u

    45. [45]

      Tóth, J. Adsorption: Theory, Modeling, and Analysis, Marcel Dekker, New York, 2002, p. 26.

    46. [46]

      Whittier, R. E. MS Thesis, North Carolina State University, Raleigh, 2004.

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(0)
  • Abstract views(1313)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return