Citation: Zhang Guobin, Xiong Tengfei, Pan Xuelei, Yan Mengyu, Han Chunhua, Mai Liqiang. In Situ Observation and Mechanism Investigation of Lattice Breathing in Vanadium Oxide Cathode[J]. Acta Chimica Sinica, ;2016, 74(7): 582-586. doi: 10.6023/A16030114 shu

In Situ Observation and Mechanism Investigation of Lattice Breathing in Vanadium Oxide Cathode

  • Corresponding author: Mai Liqiang, mlq518@whut.edu.cn
  • Received Date: 3 March 2016

    Fund Project: National Science Fund for Distinguished Young Scholars 51425204the National Basic Research Program of China 2013CB934103International Science & Technology Cooperation Program of China 2013DFA50840the National Basic Research Program of China 2012CB933003

Figures(6)

  • As cathode materials in lithium-ion batteries, layered vanadium oxides have been extensively studied and used in many aspects varying from industrial production to our daily life, due to their excellent physical property and gorgeous lithium storage performance. During lithiation/delithiation, layered vanadium oxides such as V2O5 xerogel (with a bilayer structure), undergoes "lattice breathing" which leads to the deactivation of electrode materials and fast capacity fading, which limits its large-scale application. In this work, VOx is used as the cathode material of lithium-ion batteries to study the "lattice breathing" phenomenon. The phase evolution has been observed and studied via in situ method. The X-ray diffraction (XRD) patterns show typical (001) diffraction peaks characteristic of vanadium oxide xerogel structure and also confirm the good crystallinity. This compound with crystal parameters of a=4.56 Å, b=14.87 Å, c=12.38 Å, α=117.26°, β=96.02°, γ=81.86°, forms a triclinic structure. Results of scanning electron microscope (SEM) and transmission electron microscope (TEM) further verify the layered structure of VOx. The thermo gravimetric analysis (TGA) at air and nitrogen atmosphere shows that the carbon content of the sample is about 2.4 wt% and the water content is about 2.1%. As lithium-ion battery cathode the initial discharge capacity of the compound is about 136 mA·h/g at a current density of 100 mA/g, with a capacity retention of 92.6% after 50 cycles. To study the lithium storage mechanism of VOx, electrochemical discharge/charge processes are further investigated by in situ XRD. It is found that the lattice plane diffraction displays three different stages linked during the insertion and deinsertion of lithium ions, indicating three solid solution reactions. During discharge process, the three diffraction changes show continuous shifts to higher diffraction angles, demonstrating three different continuous contraction processes with the insertion of lithium ions. Nevertheless, the evolution of the (001) peak is swift during the beginning and the end of discharge, in contrast to the slow deviation of the intermediate process. In the whole process, the diffraction pattern displays periodic changes, confirming the reversibility of the reaction process. The corresponding calculations of d001 during the discharge/charge process prove the notable discontinuity between these three stages. In addition, cycling experiments conducted at the higher and the lower temperature indicate that the electrochemical performance of this compound is highly sensitive to temperature.
  • 加载中
    1. [1]

      Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.

    2. [2]

      Pan, H. L.; Hu, Y. S.; Chen, L. Q. Energy Environ. Sci. 2013, 6, 2338.  doi: 10.1039/c3ee40847g

    3. [3]

      Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. ChemInform 2013, 44, 3127.

    4. [4]

      An, T. C; Wang, Y. H.; Tang, J.; Wang, Y.; Zhang, L. J.; Zheng, G. F. J. Colloid Interface Sci. 2015, 445, 320.  doi: 10.1016/j.jcis.2015.01.012

    5. [5]

      Kim, H.; Hong, J. H.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114, 11788.  doi: 10.1021/cr500232y

    6. [6]

      Yang, C. P.; Yin, Y. X.; Ye, H.; Jiang, K. C.; Zhang, J.; Guo, Y. G. ACS Appl. Mater. Interfaces 2014, 6, 8789.  doi: 10.1021/am501627f

    7. [7]

      Lyu, Z. Y.; Feng, R.; Zhao, J.; Fan, H.; Xu, D.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2015, 73, 1013.
       

    8. [8]

      Feng, R.; Wang, L. W.; Lyu, Z. Y.; Wu, Q.; Yang, L. J.; Wang, X. Z.; Hu, Z. Acta Chim. Sinica 2014, 72, 653.  doi: 10.6023/A14030227
       

    9. [9]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.  doi: 10.1038/451652a

    10. [10]

      Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Nano Res. 2014, 7, 1.  doi: 10.1007/s12274-013-0375-x

    11. [11]

      Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. Energy Environ. Sci. 2015, 8, 81.  doi: 10.1039/C4EE03192J

    12. [12]

      Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502.  doi: 10.1126/science.1241488

    13. [13]

      Naguib, M.; Gogotsi, Y. Acc. Chem. Res. 2014, 48, 128.

    14. [14]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992.  doi: 10.1002/adma.201304138

    15. [15]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.  doi: 10.1038/35035045

    16. [16]

      Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Chem. Rev. 2013, 113, 5364.  doi: 10.1021/cr3001884

    17. [17]

      Wei, Q. L.; Tan, S. S.; Liu, X. Y.; Yan, M. Y.; Wang, F. C.; Li, Q. D.; An, Q. Y.; Sun, R. M.; Zhao, K. N.; Wu, H. A. Adv. Funct. Mater. 2015, 25, 1773.  doi: 10.1002/adfm.201404311

    18. [18]

      Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. J. Mater. Chem. 2009, 19, 2526.  doi: 10.1039/b819629j

    19. [19]

      Dai, L.; Gao, Y. F.; Cao, C. X.; Chen, Z.; Luo, H. J.; Kanehira, M.; Jin, J.; Liu, Y. RSC Adv. 2012, 2, 5265.  doi: 10.1039/c2ra20587d

    20. [20]

      Wang, C. Q.; Liu, X. L.; Shao, J.; Xiong, W. M.; Ma, W. J.; Zheng, Y. RSC Adv. 2014, 4, 64021.  doi: 10.1039/C4RA12392A

    21. [21]

      Murugan, A. V.; Kale, B. B.; Kwon, C. W.; Campet, G.; Vijayamohanan, K. J. Mater. Chem. 2001, 11, 2470.  doi: 10.1039/b100714i

    22. [22]

      Wang, Y.; Cao, G. Z. Chem. Mater. 2006, 18, 2787.  doi: 10.1021/cm052765h

    23. [23]

      Wang, Y.; Takahashi, K.; Lee, K. H.; Cao, G. Z. Adv. Funct. Mater. 2006, 16, 1133.  doi: 10.1002/(ISSN)1616-3028

    24. [24]

      Sathiya, M.; Prakash, A. S.; Ramesha, K.; Tarascon, J. M.; Shukla, A. K. J. Am. Chem. Soc. 2011, 133, 16291.  doi: 10.1021/ja207285b

    25. [25]

      Whittingham, M. S. Chem. Rev. 2004, 104, 4271.  doi: 10.1021/cr020731c

    26. [26]

      Wei, Q. L.; Jiang, Z. Y.; Tan, S. S.; Li, Q. D.; Huang, L.; Yan, M. Y.; Zhou, L.; An, Q. Y.; Mai, L. Q. ACS Appl. Mater. Interfaces 2015, 7, 18211.  doi: 10.1021/acsami.5b06154

    27. [27]

      Wei, Q. L.; Liu, J.; Feng, W.; Sheng, J. Z.; Tian, X. C.; He, L.; An, Q. Y.; Mai, L. Q. J. Mater. Chem. A 2015, 3, 8070.  doi: 10.1039/C5TA00502G

    28. [28]

      Zhao, Y. L.; Han, C. H.; Yang, J. W.; Su, J.; Xu, X. M.; Li, S.; Xu, L.; Fang, R. P.; Jiang, H.; Zou, X. D. Nano Lett. 2015, 15, 2180.  doi: 10.1021/acs.nanolett.5b00284

    29. [29]

      Zhou, Y. N.; Ma, J.; Hu, E. Y.; Yu, X. Q.; Gu, L.; Nam, K. W.; Chen, L. Q.; Wang, Z. X.; Yang, X. Q. Nat. Commun. 2013, 5, 5381.

    30. [30]

      Liu, Q.; Li, Z. F.; Liu, Y. D.; Zhang, H. Y.; Ren, Y.; Sun, C. J.; Lu, W. Q.; Zhou, Y.; Stanciu, L.; Stach, E. A.; Xie, J. Nat. Commun. 2015, 6, 6127.  doi: 10.1038/ncomms7127

    31. [31]

      Dong, Y. F.; Xu, X. M.; Li, S.; Han, C. H.; Zhao, K. N.; Zhang, L.; Niu, C. J.; Huang, Z.; Mai, L. Q. Nano Energy 2015, 15, 145.  doi: 10.1016/j.nanoen.2015.04.015

    32. [32]

      Berthelot, R.; Carlier, D.; Delmas, C. Nat. Mater. 2011, 10, 74.  doi: 10.1038/nmat2920

    33. [33]

      Liu, H.; Strobridge, F. C.; Borkiewicz, O. J.; Wiaderek, K. M.; Chapman, K. W.; Chupas, P. J.; Grey, C. P. Science 2014, 344, 1451.  doi: 10.1126/science.1255819

    34. [34]

      Wu, D.; Li, X.; Xu, B.; Twu, N.; Liu, L.; Ceder, G. Energy Environ. Sci. 2015, 8, 195.  doi: 10.1039/C4EE03045A

    35. [35]

      Yue, J. L.; Zhou, Y. N.; Shi, S. Q.; Shadike, Z.; Huang, X. Q.; Luo, J.; Yang, Z. Z.; Li, H.; Gu, L.; Yang, X. Q.; Fu, Z. W. Sci. Rep. 2014, 5, 8810.

    36. [36]

      Li, Q. D.; Wei, Q. L.; Sheng, J. Z.; Yan, M. Y.; Zhou, L.; Luo, W.; Sun, R. M.; Mai, L. Q. Adv. Sci. 2015, 2, 1500284.  doi: 10.1002/advs.201500284

    37. [37]

      Wu, X. L.; Guo, Y. G.; Su, J.; Xiong, J. W.; Zhang, Y. L.; Wan, L. J. Adv. Energy Mater. 2013, 3, 1155.  doi: 10.1002/aenm.v3.9

    38. [38]

      Liao, X. Z.; Ma, Z. F.; Gong, Q.; He, Y. S.; Pei, L.; Zeng, L. Electrochem. Commun. 2008, 10, 691.  doi: 10.1016/j.elecom.2008.02.017

    39. [39]

      Yang, S.; Gong, Y.; Liu, Z.; Zhan, L.; Hashim, D. P.; Ma, L.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2013, 13, 1596.  doi: 10.1021/nl400001u

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

Metrics
  • PDF Downloads(0)
  • Abstract views(896)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return