Citation: Hu Min, Shang Dongjie, Guo Song, Wu Zhijun. Mechanism of New Particle Formation and Growth as well as Environmental Effects under Complex Air Pollution in China[J]. Acta Chimica Sinica, ;2016, 74(5): 385-391. doi: 10.6023/A16020105 shu

Mechanism of New Particle Formation and Growth as well as Environmental Effects under Complex Air Pollution in China

  • Corresponding author: Hu Min, minhu@pku.edu.cn
  • Received Date: 26 February 2016

    Fund Project: National Basic Research Program of China 2013CB228503the National Natural Science Foundation of China 41121004the National Natural Science Foundation of China 21190052Special Fund for Strategic Pilot Technology Chinese Academy of Sciences XDB05010500the National Natural Science Foundation of China 91544214

Figures(1)

  • New particle formation (NPF) and its subsequent growth plays a key role in air quality and climate change at regional and global scales. Especially under complex air pollution in China, nucleation and growth can be highly efficient, claimed to be a main source of cloud condensation nuclei (CCN) and an important cause of secondary aerosol pollution. Currently, the mechanism of particle formation and growth as well as its environmental effects are still poorly understood. Thereby, fully understanding of the atmospheric nucleation and subsequent growth still presents a big challenge to atmospheric chemistry researches. This study reviews the current results from studies on mechanisms and environmental effects of atmospheric nucleation and growth. We summarize that traditional nucleation theories such as binary nucleation of H2SO4-H2O, ternary nucleation of H2SO4-NH3-H2O, ion-induced nucleation are not capable in explaining new particle formation under complex air pollution, while newly proposed mechanisms such as organic acids and amine induced nucleation were not verified because of technique limitation. We propose that the future researches should focus on identifying the key chemical precursor response for driving nucleation and initial and subsequent growth, and understand the physical and chemical processing of new particle formation and growth. In particularly, application and development of novel techniques, such as APi-TOF-CIMS, PSM, Nano-HTDMA in new particle formation study is very important. Also, future researches should establish whole process tracking on new particle formation, from precursor, nucleation, growth till the environmental effects, by integrating field observation, chamber simulation, and modelling. Currently, the mechanism of highly efficient nucleation and rapid growth taking place under complex air pollution in China is urgently needed to be in-depth studied in order to improve our understanding of regional haze formation. This could be helpful to understand the similarity and difference in the nucleation mechanism between clean and polluted atmospheric environments.
  • 加载中
    1. [1]

      Kulmala, M. Science 2003, 302, 1000.  doi: 10.1126/science.1090848

    2. [2]

      Zhang, R. Science 2010, 328, 1366.  doi: 10.1126/science.1189732

    3. [3]

      Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H. G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S. Atmos. Meas. Tech. 2012, 5, 657.  doi: 10.5194/amt-5-657-2012

    4. [4]

      Carslaw, K. S.; Lee, L. A.; Reddington, C. L.; Pringle, K. J.; Rap, A.; Forster, P. M.; Mann, G. W.; Spracklen, D. V.; Woodhouse, M. T.; Regayre, L. A.; Pierce, J. R. Nature 2013, 503, 67.  doi: 10.1038/nature12674

    5. [5]

      Guo, S.; Hu, M.; Zamora, M. L.; Peng, J.; Shang, D.; Zheng, J.; Du, Z.; Wu, Z.; Shao, M.; Zeng, L.; Molina, M. J.; Zhang, R. Proc. Natl. Acad. Sci. 2014, 111, 17373.  doi: 10.1073/pnas.1419604111

    6. [6]

      Sioutas, C.; Delfino, R. J.; Singh, M. Environ. Health Perspect. 2005, 113, 947.  doi: 10.1289/ehp.7939

    7. [7]

      Zhang, R.; Khalizov, A.; Wang, L.; Hu, M.; Xu, W. Chem. Rev. 2012, 112, 1957.  doi: 10.1021/cr2001756

    8. [8]

      Kulmala, M.; Lehtinen, K. E. J.; Laaksonen, A. Atmos. Chem. Phys. 2006, 6, 787.  doi: 10.5194/acp-6-787-2006

    9. [9]

      Wang, Z. B.; Hu, M.; Yue, D. L.; Zheng, J.; Zhang, R. Y.; Wiedensohler, A.; Wu, Z. J.; Nieminen, T.; Boy, M. Atmos. Chem. Phys. 2011, 11, 12663.  doi: 10.5194/acp-11-12663-2011

    10. [10]

      Kulmala, M.; Pirjola, L.; Makela, J. M. Nature 2000, 404, 66.  doi: 10.1038/35003550

    11. [11]

      Kerminen, V. M.; Petäjä, T.; Manninen, H. E.; Paasonen, P.; Nieminen, T.; Sipilä, M.; Junninen, H.; Ehn, M.; Gagné, S.; Laakso, L.; Riipinen, I.; Vehkamäki, H.; Kurten, T.; Ortega, I. K.; Dal Maso, M.; Brus, D.; Hyvärinen, A.; Lihavainen, H.; Leppä, J.; Lehtinen, K. E. J.; Mirme, A.; Mirme, S.; Hõrrak, U.; Berndt, T.; Stratmann, F.; Birmili, W.; Wiedensohler, A.; Metzger, A.; Dommen, J.; Baltensperger, U.; Kiendler-Scharr, A.; Mentel, T. F.; Wildt, J.; Winkler, P. M.; Wagner, P. E.; Petzold, A.; Minikin, A.; Plass-Dülmer, C.; Pöschl, U.; Laaksonen, A.; Kulmala, M. Atmos. Chem. Phys. 2010, 10, 10829.  doi: 10.5194/acp-10-10829-2010

    12. [12]

      Kirkby, J.; Curtius, J.; Almeida, J.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Franchin, A.; Gagne, S.; Ickes, L.; Kurten, A.; Kupc, A.; Metzger, A.; Riccobono, F.; Rondo, L.; Schobesberger, S.; Tsagkogeorgas, G.; Wimmer, D.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; David, A.; Dommen, J.; Downard, A.; Ehn, M.; Flagan, R. C.; Haider, S.; Hansel, A.; Hauser, D.; Jud, W.; Junninen, H.; Kreissl, F.; Kvashin, A.; Laaksonen, A.; Lehtipalo, K.; Lima, J.; Lovejoy, E. R.; Makhmutov, V.; Mathot, S.; Mikkila, J.; Minginette, P.; Mogo, S.; Nieminen, T.; Onnela, A.; Pereira, P.; Petaja, T.; Schnitzhofer, R.; Seinfeld, J. H.; Sipila, M.; Stozhkov, Y.; Stratmann, F.; Tome, A.; Vanhanen, J.; Viisanen, Y.; Vrtala, A.; Wagner, P. E.; Walther, H.; Weingartner, E.; Wex, H.; Winkler, P. M.; Carslaw, K. S.; Worsnop, D. R.; Baltensperger, U.; Kulmala, M. Nature 2011, 476, 429.  doi: 10.1038/nature10343

    13. [13]

      O'Dowd, C. D. J. Geophys. Res. 2001, 106, 1545.  doi: 10.1029/2000JD900423

    14. [14]

      Allan, J. D.; Williams, P. I.; Najera, J.; Whitehead, J. D.; Flynn, M. J.; Taylor, J. W.; Liu, D.; Darbyshire, E.; Carpenter, L. J.; Chance, R.; Andrews, S. J.; Hackenberg, S. C.; McFiggans, G. Atmos. Chem. Phys. 2015, 15, 5599.  doi: 10.5194/acp-15-5599-2015

    15. [15]

      Wang, Z.; Hu, M.; Wu, Z.; Yue, D. Acta Chim. Sinica 2013, 71, 519.  doi: 10.6023/A12121062
       

    16. [16]

      Zhang, R.; Suh, I.; Zhao, J.; Zhang, D.; Fortner, E. C.; Tie, X.; Molina, L. T.; Molina, M. J. Science 2004, 304, 1487.  doi: 10.1126/science.1095139

    17. [17]

      Almeida, J.; Schobesberger, S.; Kurten, A.; Ortega, I. K.; Kupiainen-Maatta, O.; Praplan, A. P.; Adamov, A.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; David, A.; Dommen, J.; Donahue, N. M.; Downard, A.; Dunne, E.; Duplissy, J.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Guida, R.; Hakala, J.; Hansel, A.; Heinritzi, M.; Henschel, H.; Jokinen, T.; Junninen, H.; Kajos, M.; Kangasluoma, J.; Keskinen, H.; Kupc, A.; Kurten, T.; Kvashin, A. N.; Laaksonen, A.; Lehtipalo, K.; Leiminger, M.; Leppa, J.; Loukonen, V.; Makhmutov, V.; Mathot, S.; McGrath, M. J.; Nieminen, T.; Olenius, T.; Onnela, A.; Petaja, T.; Riccobono, F.; Riipinen, I.; Rissanen, M.; Rondo, L.; Ruuskanen, T.; Santos, F. D.; Sarnela, N.; Schallhart, S.; Schnitzhofer, R.; Seinfeld, J. H.; Simon, M.; Sipila, M.; Stozhkov, Y.; Stratmann, F.; Tome, A.; Trostl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Viisanen, Y.; Virtanen, A.; Vrtala, A.; Wagner, P. E.; Weingartner, E.; Wex, H.; Williamson, C.; Wimmer, D.; Ye, P.; Yli-Juuti, T.; Carslaw, K. S.; Kulmala, M.; Curtius, J.; Baltensperger, U.; Worsnop, D. R.; Vehkamaki, H.; Kirkby, J. Nature 2013, 502, 359.  doi: 10.1038/nature12663

    18. [18]

      Riccobono, F.; Schobesberger, S.; Scott, C. E.; Dommen, J.; Ortega, I. K.; Rondo, L.; Almeida, J.; Amorim, A.; Bianchi, F.; Breitenlechner, M.; David, A.; Downard, A.; Dunne, E. M.; Duplissy, J.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Hansel, A.; Junninen, H.; Kajos, M.; Keskinen, H.; Kupc, A.; Kürten, A.; Kvashin, A. N.; Laaksonen, A.; Lehtipalo, K.; Makhmutov, V.; Mathot, S.; Nieminen, T.; Onnela, A.; Petäjä, T.; Praplan, A. P.; Santos, F. D.; Schallhart, S.; Seinfeld, J. H.; Sipilä, M.; Spracklen, D. V.; Stozhkov, Y.; Stratmann, F.; Tomé, A.; Tsagkogeorgas, G.; Vaattovaara, P.; Viisanen, Y.; Vrtala, A.; Wagner, P. E.; Weingartner, E.; Wex, H.; Wimmer, D.; Carslaw, K. S.; Curtius, J.; Donahue, N. M.; Kirkby, J.; Kulmala, M.; Worsnop, D. R.; Baltensperger, U. Science 2014, 344, 717.  doi: 10.1126/science.1243527

    19. [19]

      Kulmala, M.; Kontkanen, J.; Junninen, H.; Lehtipalo, K.; Manninen, H. E.; Nieminen, T.; Petäjä, T.; Sipilä, M.; Schobesberger, S.; Rantala, P.; Franchin, A.; Jokinen, T.; Järvinen, E.; äijälä, M.; Kangasluoma, J.; Hakala, J.; Aalto, P. P.; Paasonen, P.; Mikkilä, J.; Vanhanen, J.; Aalto, J.; Hakola, H.; Makkonen, U.; Ruuskanen, T.; Mauldin, R. L.; Duplissy, J.; Vehkamäki, H.; Bäck, J.; Kortelainen, A.; Riipinen, I.; Kurtén, T.; Johnston, M. V.; Smith, J. N.; Ehn, M.; Mentel, T. F.; Lehtinen, K. E. J.; Laaksonen, A.; Kerminen, V.-M.; Worsnop, D. R. Science 2013, 339, 943.  doi: 10.1126/science.1227385

    20. [20]

      Paasonen, P.; Olenius, T.; Kupiainen, O.; Kurtén, T.; Petäjä, T.; Birmili, W.; Hamed, A.; Hu, M.; Huey, L. G.; Plass-Duelmer, C.; Smith, J. N.; Wiedensohler, A.; Loukonen, V.; McGrath, M. J.; Ortega, I. K.; Laaksonen, A.; Vehkamäki, H.; Kerminen, V. M.; Kulmala, M. Atmos. Chem. Phys. 2012, 12, 9113.  doi: 10.5194/acp-12-9113-2012

    21. [21]

      Wang, Z. B.; Hu, M.; Mogensen, D.; Yue, D. L.; Zheng, J.; Zhang, R. Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z. J.; Wiedensohler, A.; Boy, M. Atmos. Chem. Phys. 2013, 13, 11157.  doi: 10.5194/acp-13-11157-2013

    22. [22]

      Sipilä, M.; Berndt, T.; Petäjä, T.; Brus, D.; Vanhanen, J.; Stratmann, F.; Patokoski, J.; Mauldin, R. L.; Hyvärinen, A.-P.; Lihavainen, H.; Kulmala, M. Science 2010, 327, 1243.  doi: 10.1126/science.1180315

    23. [23]

      Zhang, R.; Wang, G.; Guo, S.; Zamora, M. L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Chem. Rev. 2015, 115, 3803.  doi: 10.1021/acs.chemrev.5b00067

    24. [24]

      Kulmala, M.; Kerminen, V.-M. Atmos. Res. 2008, 90, 132.  doi: 10.1016/j.atmosres.2008.01.005

    25. [25]

      Riipinen, I.; Yli-Juuti, T.; Pierce, J. R.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Donahue, N. M. Nat. Geosci. 2012, 5, 453.  doi: 10.1038/ngeo1499

    26. [26]

      Kiendler-Scharr, A.; Wildt, J.; Dal Maso, M.; Hohaus, T.; Kleist, E.; Mentel, T. F.; Tillmann, R.; Uerlings, R.; Schurr, U.; Wahner, A. Nature 2009, 461, 381.  doi: 10.1038/nature08292

    27. [27]

      Xu, W.; Gomez-Hernandez, M.; Guo, S.; Secrest, J.; Marrero-Ortiz, W.; Zhang, A. L.; Zhang, R. J. Am. Chem. Soc. 2014, 136, 15477.  doi: 10.1021/ja508989a

    28. [28]

      Ehn, M.; Thornton, J. A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; Lopez-Hilfiker, F.; Andres, S.; Acir, I.-H.; Rissanen, M.; Jokinen, T.; Schobesberger, S.; Kangasluoma, J.; Kontkanen, J.; Nieminen, T.; Kurtén, T.; Nielsen, L. B.; Jørgensen, S.; Kjaergaard, H. G.; Canagaratna, M.; Maso, M. D.; Berndt, T.; Petäjä, T.; Wahner, A.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D. R.; Wildt, J.; Mentel, T. F. Nature 2014, 506, 476.  doi: 10.1038/nature13032

    29. [29]

      Wang, L.; Khalizov, A. F.; Zheng, J.; Xu, W.; Ma, Y.; Lal, V.; Zhang, R. Nat. Geosci. 2010, 3, 238.  doi: 10.1038/ngeo778

    30. [30]

      Dusek, U.; Frank, G. P.; Curtius, J.; Drewnick, F.; Schneider, J.; Kürten, A.; Rose, D.; Andreae, M. O.; Borrmann, S.; Pöschl, U. Geophys. Res. Lett. 2010, 37.

    31. [31]

      Smith, J. N.; Dunn, M. J.; VanReken, T. M.; Iida, K.; Stolzenburg, M. R.; McMurry, P. H.; Huey, L. G. Geophys. Res. Lett. 2008, 35, 228.

    32. [32]

      Bzdek, B. R.; Zordan, C. A.; Luther, G. W.; Johnston, M. V. Aerosol Sci. Technol. 2011, 45, 1041.  doi: 10.1080/02786826.2011.580392

    33. [33]

      Guo, S.; Hu, M.; Guo, Q.; Shang, D. Acta Chim. Sinica 2014, 72, 658.  doi: 10.6023/A14040254
       

    34. [34]

      Guo, S.; Hu, M.; Shang, D.; Guo, Q.; Hu, W. Acta Chim. Sinica 2014, 72, 145.  doi: 10.6023/A13111169
       

    35. [35]

      Kerminen, V. M.; Paramonov, M.; Anttila, T.; Riipinen, I.; Fountoukis, C.; Korhonen, H.; Asmi, E.; Laakso, L.; Lihavainen, H.; Swietlicki, E.; Svenningsson, B.; Asmi, A.; Pandis, S. N.; Kulmala, M.; Petäjä, T. Atmos. Chem. Phys. 2012, 12, 12037.  doi: 10.5194/acp-12-12037-2012

    36. [36]

      Spracklen, D. V.; Carslaw, K. S.; Kulmala, M.; Kerminen, V.-M.; Sihto, S.-L.; Riipinen, I.; Merikanto, J.; Mann, G. W.; Chipperfield, M. P.; Wiedensohler, A.; Birmili, W.; Lihavainen, H. Geophys. Res. Lett. 2008, 35, 160.

    37. [37]

      Yue, D. L.; Hu, M.; Zhang, R. Y.; Wu, Z. J.; Su, H.; Wang, Z. B.; Peng, J. F.; He, L. Y.; Huang, X. F.; Gong, Y. G.; Wiedensohler, A. Atmos. Environ. 2011, 45, 6070.  doi: 10.1016/j.atmosenv.2011.07.037

    38. [38]

      Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J. Atmos. Chem. Phys. 2010, 10, 10733.  doi: 10.5194/acp-10-10733-2010

    39. [39]

      Peng, J. F.; Hu, M.; Wang, Z. B.; Huang, X. F.; Kumar, P.; Wu, Z. J.; Guo, S.; Yue, D. L.; Shang, D. J.; Zheng, Z.; He, L. Y. Atmos. Chem. Phys. 2014, 14, 10249.  doi: 10.5194/acp-14-10249-2014

    40. [40]

      Zhu, Y.; Sabaliauskas, K.; Liu, X.; Meng, H.; Gao, H.; Jeong, C.-H.; Evans, G. J.; Yao, X. Atmos. Environ. 2014, 98, 655.  doi: 10.1016/j.atmosenv.2014.09.043

    41. [41]

      Wehner, B.; Wiedensohler, A.; Tuch, T. M.; Wu, Z. J.; Hu, M.; Slanina, J.; Kiang, C. S. Geophys. Res. Lett. 2004, 31, 217.

    42. [42]

      Wu, Z.; Hu, M.; Liu, S.; Wehner, B.; Bauer, S.; Ma ßling, A.; Wiedensohler, A.; Petäjä, T.; Dal Maso, M.; Kulmala, M. J. Geophys. Res. 2007, 112, D09209.

    43. [43]

      Leng, C.; Zhang, Q.; Tao, J.; Zhang, H.; Zhang, D.; Xu, C.; Li, X.; Kong, L.; Cheng, T.; Zhang, R.; Yang, X.; Chen, J.; Qiao, L.; Lou, S.; Wang, H.; Chen, C. Atmos. Chem. Phys. 2014, 14, 11353.  doi: 10.5194/acp-14-11353-2014

    44. [44]

      Wang, Z. B.; Hu, M.; Sun, J. Y.; Wu, Z. J.; Yue, D. L.; Shen, X. J.; Zhang, Y. M.; Pei, X. Y.; Cheng, Y. F.; Wiedensohler, A. Atmos. Chem. Phys. 2013, 13, 12495.  doi: 10.5194/acp-13-12495-2013

    45. [45]

      Wang, H.; Zhu, B.; Shen, L.; An, J.; Yin, Y.; Kang, H. Atmos. Res. 2014, 150, 42.  doi: 10.1016/j.atmosres.2014.07.020

    46. [46]

      Lin, P.; Hu, M.; Wu, Z.; Niu, Y.; Zhu, T. Atmos. Environ. 2007, 41, 6784.  doi: 10.1016/j.atmosenv.2007.04.045

    47. [47]

      Gong, Y.; Su, H.; Cheng, Y.; Liu, F.; Wu, Z.; Hu, M.; Zeng, L.; Zhang, Y. Adv. Atmos. Sci. 2008, 25, 427.  doi: 10.1007/s00376-008-0427-4

    48. [48]

      Yue, D. L.; Hu, M.; Wang, Z. B.; Wen, M. T.; Guo, S.; Zhong, L. J.; Wiedensohler, A.; Zhang, Y. H. Atmos. Environ. 2013, 76, 181.  doi: 10.1016/j.atmosenv.2012.11.018

    49. [49]

      Kivekäs, N.; Sun, J.; Zhan, M.; Kerminen, V. M.; Hyvärinen, A.; Komppula, M.; Viisanen, Y.; Hong, N.; Zhang, Y.; Kulmala, M.; Zhang, X. C.; Deli, G.; Lihavainen, H. Atmos. Chem. Phys. 2009, 9, 5461.  doi: 10.5194/acp-9-5461-2009

    50. [50]

      Shen, X. J.; Sun, J. Y.; Zhang, Y. M.; Wehner, B.; Nowak, A.; Tuch, T.; Zhang, X. C.; Wang, T. T.; Zhou, H. G.; Zhang, X. L.; Dong, F.; Birmili, W.; Wiedensohler, A. Atmos. Chem. Phys. 2011, 11, 1565.  doi: 10.5194/acp-11-1565-2011

    51. [51]

      Chen, C.; Hu, M.; Wu, Z. J.; Wu, Y. S.; Guo, S.; Chen, W. T.; Luo, B.; Shao, M.; Zhang, Y. H.; Xie, S. D. China Environ. Sci. 2014, 34, 2764.

    52. [52]

      Yue, D. L.; Hu, M.; Zhang, R. Y.; Wang, Z. B.; Zheng, J.; Wu, Z. J.; Wiedensohler, A.; He, L. Y.; Huang, X. F.; Zhu, T. Atmos. Chem. Phys. 2010, 10, 4953.  doi: 10.5194/acp-10-4953-2010

    53. [53]

      Yu, F.; Hallar, A. G. J. Geophys. Res.-Atmos. 2014, 119, 12.  doi: 10.1002/2012JF002711

    54. [54]

      Yu, F. J. Geophys. Res. 2010, 115, D03206.

    55. [55]

      Yu, F.; Luo, G.; Liu, X.; Easter, R. C.; Ma, X.; Ghan, S. J. Atmos. Chem. Phys. 2012, 12, 11451.  doi: 10.5194/acp-12-11451-2012

    56. [56]

      Li, Q.; Jiang, J.; Hao, J. KONA Powder Part. J. 2015, 32, 57.  doi: 10.14356/kona.2015013

    57. [57]

      Nie, W.; Ding, A.; Wang, T.; Kerminen, V. M.; George, C.; Xue, L.; Wang, W.; Zhang, Q.; Petaja, T.; Qi, X.; Gao, X.; Wang, X.; Yang, X.; Fu, C.; Kulmala, M. Sci. Rep. 2014, 4, 6634."  doi: 10.1038/srep06634

  • 加载中
    1. [1]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Zhonghua Xi Xuanfeng Kong Jinyue Yang Bin Liu Tingyu Zhu Hui Zhang Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123

    4. [4]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    7. [7]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    10. [10]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    15. [15]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    16. [16]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    17. [17]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

Metrics
  • PDF Downloads(0)
  • Abstract views(3061)
  • HTML views(1101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return