Citation: Zhang Shaofei, Yang Jiandong, Liu Mingzhu, Lü Shaoyu, Gao Chunmei, Wu Can, Zhu Zhaoyan. Synthesis of Peptide Dendrimers and Their Application in the Drug Delivery System[J]. Acta Chimica Sinica, ;2016, 74(5): 401-409. doi: 10.6023/A16020096 shu

Synthesis of Peptide Dendrimers and Their Application in the Drug Delivery System

  • Corresponding author: Liu Mingzhu, 
  • Received Date: 22 February 2016

    Fund Project: the National Natural Science Foundation of China 51541304the National Natural Science Foundation of China 51273086Key Research Project of Longnan Teacher's College 2014LSZK01004Special Doctorial Program Fund from the Ministry of Education of China 20130211110017

Figures(12)

  • Dendrimers are a novel polymer material, which have received more and more attention due to the functional groups on their surface, hydrophobic cavity and adjustable sizes. Thus, dendrimers have been widely used in many fields. Peptide dendrimer is a sort of dendritic polymer, which contains peptide bonds in the structure. Owing to the globular structure similar to the protein, excellent water solubility, biocompatibility, biodegradability and low toxicity, peptide dendrimer could be used as drug delivery carrier. In addition, hydrophobic cavity can be used to solubilize hydrophobic drugs, in which the drugs can be released slowly. The present review highlights the current status of synthesis of peptide dendrimers, and it also summarizes and forecasts the interaction mechanism between drug molecules and peptide dendrimers, and the application of peptide dendrimers in drug delivery system.
  • 加载中
    1. [1]

      Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117.  doi: 10.1295/polymj.17.117

    2. [2]

      Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K. J. Org. Chem. 1985, 50, 2003.  doi: 10.1021/jo00211a052

    3. [3]

      Tian, W.; Ma, Y. Chem. Soc. Rev. 2013, 42, 707.

    4. [4]

      Nanjwade, B. K.; Bechra, H. M.; Derkar, G. K.; Manvi, F. V.; Nanjwade, V. K. Eur. J. Pharm. Sci. 2009, 38, 189.

    5. [5]

      Surendra, T.; Malay, K. D. J. Appl. Pharm. Sci. 2013, 3, 143.

    6. [6]

      Klajnert, B.; Bryszewskar, M. Acta Biochim. Pol. 2001, 48, 203.

    7. [7]

      Prashant, K.; Keerti, J.; Narendra, K. J. Prog. Polym. Sci. 2014, 39, 276.

    8. [8]

      Li, J.; Zeng, Y.; Zhang, X.; Yu, T.; Chen, J.; Li, Y. Acta Chim. Sinica 2014, 72, 1158.
       

    9. [9]

      Li, J.; Zeng, Y.; Zhang, X.; Yu, T.; Chen, J.; Li, Y. Acta Chim. Sinica 2015, 73, 827.
       

    10. [10]

      Elizabeth, R.; Gillies, J.; Fréchet, M. J. Drug Discov. Today 2005, 10, 38.

    11. [11]

      Marie, V.; Walter; Michael, M. Chem. Soc. Rev. 2012, 41, 4593.  doi: 10.1039/c2cs35062a

    12. [12]

      Elham, A.; Sedigheh, F. A.; Abolfazl, A.; Morteza, M.; Hamid, T. N.; Sang, W. J.; Younes, H.; Kazem, N.-K.; Roghiyeh, P.-A. Nanoscale Res. Lett. 2014, 9, 248.  doi: 10.1186/1556-276X-9-248

    13. [13]

      Laia, C.; Glòria, S.; Miquel, P.; Ernest, G.; Miriam, R.; Fernando, A. Chem. Rev. 2005, 105, 1670.

    14. [14]

      She, W. C.; Xu, X. H.; Wang, G.; Luo, K.; Gu, Z. W. Mater. China 2012, 31, 21.

    15. [15]

      Gu, Z. W.; Luo, K.; She, W. C.; Wu, Y.; He, B. Scientia Sinica Chimica 2010, 40, 210.

    16. [16]

      Xu, X.; Yuan, H.; Chang, J.; He, B.; Gu, Z. Angew. Chem. Int. Ed. 2012, 124, 3185.

    17. [17]

      Wang, F.; Xu, L.; Chu, G.; Shi, J.; Guo, Q. Chin. J. Org. Chem. 2016, 36, 218.  doi: 10.6023/cjoc201505014

    18. [18]

      Merrifield, R. B. J. Am. Chem. Soc. 1964, 3, 1385.

    19. [19]

      Daniel, K. S.; Sahar, M.; Ulrik, B. Tetrahedron Lett. 2014, 55, 3942.  doi: 10.1016/j.tetlet.2014.04.127

    20. [20]

      Laia, C.; Glòria, S.; Beatriz, M.; Ricardo, P. T.; Miriam, R.; Miquel, P.; Fernando, A.; Ernest, G. J. Am. Chem. Soc. 2002, 124, 8878.

    21. [21]

      Kitamatsu, M.; Kitabatake, M.; Noutoshi, Y.; Ohtsuki, T. Biopolymers 2013, 100, 65.

    22. [22]

      Lin, X. F.; Wang, Y. G. J. Org. Chem. 2005, 25, 1157.

    23. [23]

      Denkewalter, R. G.; Kole, J.; Lukasavage, W. J. US 4289872, 1981 [Chem. Abstr. 1981, 102, 79324].

    24. [24]

      Feng, Y.; He, Y. M.; Zhao, L. W.; Huang, Y. Y.; Fan, Q. H. Org. Lett. 2007, 9, 2261.  doi: 10.1021/ol0705393

    25. [25]

      Joon, S. C.; Dong, K. J.; Chang, H. K.; Kwan, K.; Jong, S. P. J. Am. Chem. Soc. 2000, 122, 475.

    26. [26]

      Hu, J.; He, J.; Zhang, M.; Ni, P. Acta Polymerica Sinica 2013, (3), 300.

    27. [27]

      John, E. M.; Adam, D. M. Chem. Soc. Rev. 2007, 36, 1250.

    28. [28]

      Mehmet, A. T.; Baris, K.; Yusuf, Y. Prog. Polym. Sci. 2016, 52, 19.  doi: 10.1016/j.progpolymsci.2015.09.003

    29. [29]

      Dirk, T. S. R.; Wilma, E. G.; Remco, M.; Arwin, J. B.; Hans, J. F. J.; Roland, J. P.; Rob, M. J. L. Chem. Commun. 2005, 36, 4582.

    30. [30]

      Yim, C. B.; Boerman, O. C.; Visser, M.; Jong, M.; Dechesne, A. C.; Rijkers, D. T. S.; Liskamp, R. M. J. Bioconjugate Chem. 2009, 20, 1323.  doi: 10.1021/bc900052n

    31. [31]

      Pu, Y. J.; Yuan, H.; Yang, M.; He, B.; Gu, Z. W. Chin. Chem. Lett. 2013, 24, 917.  doi: 10.1016/j.cclet.2013.06.015

    32. [32]

      Li, N.; Li, N.; Yi, Q.; Luo, K.; Guo, C.; Pan, D.; Gu, Z. Biomaterials 2014, 35, 9533.

    33. [33]

      Pan, D.; She, W.; Guo, C.; Luo, K.; Yi, Q.; Gu, Z. Biomaterials 2014, 35, 10081.

    34. [34]

      Zhang, C.; Pan, D.; Luo, K.; Li, N.; Guo, C.; Zheng, X.; Gu, Z. 2014, 5, 5228.

    35. [35]

      Reddy, N.; Reddy, R.; Jiang, Q. Trends Biotechnol. 2015, 33, 362.  doi: 10.1016/j.tibtech.2015.03.008

    36. [36]

      Domeradzka, N.; Werten, M.; Wolf, F.; Vries, R. Curr. Opin. Biotechnol. 2016, 39, 61.

    37. [37]

      Li, C. Y.; Wang, H. J.; Cao, J. M.; Zhang, J.; Yu, X. Q. Eur. J. Med. Chem. 2014, 87, 414.

    38. [38]

      Buhleier, E.; Wehner, W.; Vögtle, F. Synthesis 1978, 2, 155.

    39. [39]

      Lin, Y.; Weng, L.; Qi, Q. The Scientific World J. 2015, 2015, 5.

    40. [40]

      Hawker, C. J.; Frechet, J. M. J. Am. Chem. Soc. 1990, 112, 7638.  doi: 10.1021/ja00177a027

    41. [41]

      Scott, M. G.; Jean, M. J. F. Chem. Rev. 2001, 101, 3819.  doi: 10.1021/cr990116h

    42. [42]

      Zhu, R.; Jiang, W.; Pu, Y.; Luo, K.; Wu, Y.; He, B.; Gu, Z. J. Mater. Chem. 2011, 21, 5466.

    43. [43]

      Pierre, M.; Gilles, Q.; Ling, P. Tetrahedron Lett. 2015, 56, 4043.  doi: 10.1016/j.tetlet.2015.05.036

    44. [44]

      Olga, F.; Alexander, G.; Vladimir, R. J. Am. Chem. Soc. 2003, 125, 4885.

    45. [45]

      Dykes, M. G.; Brierley, J. L.; Smith, K. D.; McGrail, P. T.; Seeley, G. J. Chem. Eur. J, 2001, 7, 4731.

    46. [46]

      Al-Jamal, K. T.; Al-Jamal, W.; Wang, J. T.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. ACS Nano 2013, 7, 1905.  doi: 10.1021/nn305860k

    47. [47]

      Li, Y.; Han, S.; Toshiyuki, U. Sen-i Gakkaishi 2015, 71, 13.

    48. [48]

      Yuan, H.; Luo, K.; Lai, Y.; Pu, Y.; He, B.; Wang, G.; Wu, Y.; Gu, Z. Mol. Pharm. 2010, 7, 957.

    49. [49]

      Pu, Y.; Chang, S.; Yuan, H.; Wang, G.; He, B.; Gu, Z. Biomaterials 2013, 34, 3659.

    50. [50]

      Glòria, S.; Laia, C.; Ernest, G. M. R.; Fernando, A. Pept. Sci. 2004, 76, 284.

    51. [51]

      Torres, Á.; Albericio, F.; Royo, M. Eur. J. Org. Chem. 2013, 36, 8280.

    52. [52]

      Emanuele, A.; Attwood, D. Adv. Drug Delivery Rev. 2005, 57, 2147.  doi: 10.1016/j.addr.2005.09.012

    53. [53]

      He, X.; Alves, S. C.; Oliveira, N.; Rodrigues, J.; Zhu, J.; BÁnyai, I.; TomÁs, H.; Shi, X. Colloids Surf. B: Biointerfaces 2015, 125, 83.

    54. [54]

      Gillies, E.; Fréchet, J. Drug Discov. Today 2005, 10, 35.  doi: 10.1016/S1359-6446(04)03276-3

    55. [55]

      Boas, U.; Karlsson, A.; Waal, B. F. M.; Meijer, E. W. J. Org. Chem. 2001, 66, 2136.  doi: 10.1021/jo001573x

    56. [56]

      Aulenta, F.; Hayes, W. S. Eur. Polym. J. 2003, 39, 1741.  doi: 10.1016/S0014-3057(03)00100-9

    57. [57]

      Tyssen, D.; Henderson, S. A.; Johnson, A. PLoS One 2010, 5, 5.

    58. [58]

      Fox, M. E.; Guillaudeu, S.; Fréchet, J. M. J.; Jerger, K.; Macaraeg, N.; Szoka, F. C. Mol. Pharm. 2009, 6, 1563.

    59. [59]

      Craik, D. J.; Fairlie, D.; Liras, P. S.; Price, D. Chem. Biol. Drug Des. 2013, 81, 136.  doi: 10.1111/cbdd.2012.81.issue-1

    60. [60]

      Zhang, X.; Zhang, Z.; Xu, X.; Li, Y.; Li, Y.; Jian, Y.; Gu, Z. Angew. Chem. Int. Ed. 2015, 54, 4289.  doi: 10.1002/anie.201500683

    61. [61]

      Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Adv. Healthcare Mater. 2014, 3, 1299.  doi: 10.1002/adhm.v3.8

    62. [62]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Sberna, G.; Owen, D. J.; Boyd, B. J.; Porter, C. J. H. J. Control. Release 2011, 152, 338.

    63. [63]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Boyd, B. J.; Krippne, G. Y.; Williams, E. D.; Porter, C. J. H. Mol. Pharmaceutics 2009, 6, 1190.  doi: 10.1021/mp900049a

    64. [64]

      Kaminskas, L. M.; Kelly, B. D.; McLeod, V. M.; Sberna, G.; Boyd, B. J.; Owen, D. J.; Porter, C. J. H. Mol. Pharmaceutics 2011, 8, 338.  doi: 10.1021/mp1001872

    65. [65]

      Jain, K.; Gupta, U.; Jain, N. K. Eur. J. Pharm. Biopharm. 2014, 87, 503.

    66. [66]

      Bhadra, D.; Bhadra, S.; Jain, N. K. Pharm. Res. 2006, 23, 628.

    67. [67]

      Agrawal, P.; Gupta, U.; Jain, N. K. Biomaterials 2007, 28, 3349.  doi: 10.1016/j.biomaterials.2007.04.004

  • 加载中
    1. [1]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    2. [2]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    3. [3]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    4. [4]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    5. [5]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    8. [8]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    9. [9]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    14. [14]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    15. [15]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(0)
  • Abstract views(2580)
  • HTML views(370)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return