Citation: Wu Qiong, Zhao Jiajia, Sun Sibing, Tu Mansu, Shi Feng. Catalytic Asymmetric[4+2] Cycloaddition of o-Hydroxybenzyl Alcohols with o-Hydroxyl Styrenes: Diastereo-and Enantioselective Construction of Chiral Chroman Scaffold[J]. Acta Chimica Sinica, ;2016, 74(7): 576-581. doi: 10.6023/A16020080 shu

Catalytic Asymmetric[4+2] Cycloaddition of o-Hydroxybenzyl Alcohols with o-Hydroxyl Styrenes: Diastereo-and Enantioselective Construction of Chiral Chroman Scaffold

  • Corresponding author: Tu Mansu,  Shi Feng, fshi@jsnu.edu.cn
  • Received Date: 5 February 2016

    Fund Project: the National Natural Science Foundation of China 21232007the National Natural Science Foundation of China 21372002

Figures(6)

  • A chiral phosphoric acid-catalyzed asymmetric[4+2] cycloaddition of o-hydroxyl styrenes with o-quinone methides (o-QMs) generated in situ from o-hydroxybenzyl alcohols has been established. O-Hydroxybenzyl alcohols could transform into o-QM intermediates under the catalysis of chiral phosphoric acid (CPA), which are easily activated by CPA via hydrogen-bonding interaction. On the other hand, o-hydroxyl styrenes could also be activated by CPA via forming a hydrogen bond between the hydroxyl group of styrenes and the phosphoryl oxygen of CPA. So, by selecting o-hydroxybenzyl alcohols as precursors of dienes and o-hydroxyl styrenes as dienophiles under the catalysis of CPA, this catalytic asymmetric[4+2] cycloaddition provided an efficient strategy for constructing enantioenriched chroman framework with two stereogenic centers. A variety of substituted o-hydroxybenzyl alcohols and o-hydroxyl styrenes bearing either electron-donating or electron-withdrawing groups could be applicable to the reaction, delivering chiral chroman derivatives in high yields, considerable enantioselectivities and excellent diastereoselectivities (up to 78% yield, 72% ee, most of examples > 95:5 dr). The electronic nature of the substituents has some effect on the reaction. Namely, the electron-donating groups were beneficial to both the reactivity and the enantioselectivity. Based on the control experiments, it is suggested that the o-hydroxyl styrenes and the o-QM intermediates generated from o-hydroxybenzyl alcohols were simultaneously activated by CPA via forming double hydrogen bonds, thus facilitating the reaction in an enantioselective way. A representative procedure for the enantioselective[4+2] cycloaddition reaction is as following: 1, 2-dichloroethane (1 mL) was added to the mixture of o-hydroxybenzyl alcohols (0.1 mmol), o-hydroxyl styrenes (0.12 mmol), the chiral phosphoric acid (0.005 mmol), and 3 Å molecular sieves (100 mg). After being stirred at 50 ℃ for 12 h, the reaction mixture was filtered to remove the molecular sieves, and the solid powder was washed with ethyl acetate. The resultant solution was concentrated under the reduced pressure to give the residue, which was purified through flash column chromatography on silica gel to afford the pure chiral chroman derivatives.
  • 加载中
    1. [1]

      For some examples, see: (a) Ko, H.-H.; Jin, Y.-J.; Lu, T.-M.; Chen, I.-S. Chem. Biodiversity 2013, 10, 1269; (b) Kumar, S.; Deshpande, S.; Chandra, V.; Kitchlu, S.; Dwivedi, A.; Nayak, V. L.; Konwar, R.; Prabhakar; Yenamandra, S.; Sahu, D. P. Bioorg. Med. Chem. 2009, 17, 6832; (c) Hafez, H. N.; Hegab, M. I.; Ahmed-Farag, I. S.; El-Gazzar, A. B. A. Bioorg. Med. Chem. Lett. 2008, 18, 4538; (d) Poupelin, J. P.; Saint-Ruf, G.; Foussard-Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R. Eur. J. Med. Chem. 1978, 13, 67.

    2. [2]

      Kumar, S.; Deshpande, S.; Chandra, V.; Kitchlu, S.; Dwivedi, A.; Nayak, V. L.; Konwar, R.; Prabhakar, Y. S.; Sahu, D. P. Bioorg. Med. Chem. 2009, 17, 6832; (b) Sangita; Dwivedi, A.; Prathipati, P.; Ray, S. Med. Chem. Res. 2010, 19, 915.

    3. [3]

      For some examples, see: (a) Tripathi, S.; Dwivedy, I.; Dhar, J. D.; Dwivedy, A.; Ray, S. Bioorg. Med. Chem. Lett. 1997, 7, 2131; (b) Ferreira, S. B.; da Silva, F. de C.; Pinto, A. C.; Gonzaga, D. T. G.; Ferreira, V. F. J. Heterocycl. Chem. 2009, 46, 1080; (c) Zhang, H.; Zhu, L.; Wang, S.; Yao, Z.-J. J. Org. Chem. 2014, 79, 7063; (d) Yu, S.-Y.; Zhang, H.; Gao, Y.; Mo, L.; Wang, S.; Yao, Z.-J. J. Am. Chem. Soc. 2013, 135, 11402; (e) Enders, D.; Urbanietz, G.; Hahn, R.; Raabe, G. Synthesis 2012, 44, 773.

    4. [4]

      For some reviews, see: (a) van de Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367; (b) Pathak, T. P.; Sigman, M. S. J. Org. Chem. 2011, 76, 9210; (c) Willis, N. J.; Bray, C. D. Chem.-Eur. J. 2012, 18, 9160; (d) Wang, Z.; Sun, J. Synthesis 2015, 47, 3629; For some enantioselective examples, see: (e) Alden-Danforth, E.; Scerba, M. T.; Lectka, T. Org. Lett. 2008, 10, 4951; (f) Lv, H.; You, L.; Ye, S. Adv. Synth. Catal. 2009, 351, 2822; (g) Pathak, T. P.; Gligorich, K. M.; Welm, B. E.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 7870; (h) Luan, Y.; Schaus, S. E. J. Am. Chem. Soc. 2012, 134, 19965; (i) Lv, H.; Jia, W. Q.; Sun, L. H.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 8607; (j) Izquierdo, J.; Orue, A.; Scheidt, K. A. J. Am. Chem. Soc. 2013, 135, 10634; (k) Wang, Z. B.; Ai, F. J.; Wang, Z.; Zhao, W. X.; Zhu, G. Y.; Lin, Z. Y.; Sun, J. W. J. Am. Chem. Soc. 2015, 137, 383.

    5. [5]

      Wilcke, D.; Herdtweck, E.; Bach, T. Synlett 2011, 2011, 1235; (b) Zhao, W.; Wang, Z.; Chu, B.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 1910; (c) Saha, S.; Alamsetti, S. K.; Schneider, C. Chem. Commun. 2015, 51, 1461.

    6. [6]

      El-Sepelgy, O.; Haseloff, S.; Alamsetti, S. K.; Schneider, C. Angew. Chem., Int. Ed. 2014, 53, 7923; (b) Hsiao, C. C.; Liao, H. H.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13258; (c) Saha, S.; Schneider, C. Chem. Eur. J. 2015, 21, 2348; (d) Saha, S.; Schneider, C. Org. Lett. 2015, 17, 648; (e) Zhao, J.-J.; Zhang, Y.-C.; Xu, M.-M.; Tang, M.; Shi, F. J. Org. Chem. 2015, 80, 10016.

    7. [7]

      Zhao, J.-J.; Sun, S.-B.; He, S.-H.; Wu, Q.; Shi, F. Angew. Chem., Int. Ed. 2015, 54, 5460; (b) Hsiao, C.-C.; Raja, S.; Liao, H.-H.; Atodiresei, I.; Rueping, M. Angew. Chem., Int. Ed. 2015, 54, 5762. 

    8. [8]

      For early examples: (a) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem., Int. Ed. 2004, 43, 1566; (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356; For reviews: (c) Akiyama, T. Chem. Rev. 2007, 107, 5744; (d) Terada, M. Chem. Commun. 2008, 35, 4097; (e) Terada, M. Synthesis 2010, 1929; (f) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156; (g) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047; (h) Wu, X.; Li, M.-L.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 1091. (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.); (i) Wu, H.; He, Y.-P.; Shi, F. Synthesis 2015, 47, 1990; For some selected examples, see: (j) Huang, J.-Z.; Luo, S.-W.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 879. (黄建洲, 罗时玮, 龚流柱, 化学学报, 2013, 71, 879); (k) Duan, D.; Yin, Q.; Wang, S.; Gu, Q.; You, S. Acta Chim. Sinica 2014, 72, 1001. (段德河, 殷勤, 王守国, 顾庆, 游书力, 化学学报, 2014, 72, 1001.); (l) Shi, L.; Ji, Y.; Huang, W.; Zhou, Y. Acta Chim. Sinica 2014, 72, 820. (时磊, 姬悦, 黄文学, 周永贵, 化学学报, 2014, 72, 820.); (m) Lv, J.; Qin, Y.; Cheng, J.; Luo, S. Acta Chim. Sinica 2014, 72, 809. (吕健, 秦岩, 程津培, 罗三中, 化学学报, 2014, 72, 809.); (n) Wang, S.-G.; You, S.-L. Angew. Chem., Int. Ed. 2014, 53, 2194; (o) Wang, S.-G.; Yin, Q.; Zhuo, C.-X.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 647.

    9. [9]

      Chen, X.-H.; Zhang, W.-Q.; Gong, L.-Z. J. Am. Chem. Soc. 2008, 130, 5652; (b) He, L.; Chen, X.-H.; Wang, D.-N.; Luo, S.-W.; Zhang, W.-Q.; Yu, J.; Ren, L.; Gong, L.-Z. J. Am. Chem. Soc. 2011, 133, 13504.

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    4. [4]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    7. [7]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    13. [13]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(0)
  • Abstract views(598)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return