Citation: Tang Haoming, Huo Xiaohong, Meng Qinghua, Zhang Wanbin. Palladium-Catalyzed Allylic C—H Functionalization: The Development of New Catalytic Systems[J]. Acta Chimica Sinica, ;2016, 74(3): 219-233. doi: 10.6023/A16020078 shu

Palladium-Catalyzed Allylic C—H Functionalization: The Development of New Catalytic Systems

  • Corresponding author: Meng Qinghua, wanbin@sjtu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 3 February 2016

    Fund Project: National Natural Science Foundation of China 21232004

Figures(27)

  • Palladium-catalyzed allylic substitution is one of the most important methodologies for the construction of C—C and C—X bonds, and has been widely applied in the synthesis of bioactive natural and pharmaceutical products. Tremendous progress has been made towards the development of increasingly elaborate nucleophiles and catalysts to facilitate the aforementioned reaction. Despite significant advances, Pd-catalyzed allylic substitution reactions remain limited to substrates possessing a good leaving group such as a carboxylate, carbonate, phosphate, or other related derivatives on the allylic moiety. Allylic alcohols and amines have also gained attention for use as substrates for Pd-catalyzed allylic substitutions, because of their use in aiding waste minimization and sustainability. Allyl groups containing allylic C—H bond(s) widely are present in numerous commercially available organic compounds and various kinds of intermediates for chemical synthesis. There is no doubt that the transformation of allylic C—H bonds into new C—C and C—X bonds is an ideal method to introduce new functional groups into molecules to construct more complex structures. However, allylic C—H functionalizations catalyzed by transition-metals are more challenging than allylic alcohols and other related allyl substrates, due to the difficult cleavage of the C—H bond and the need for a suitable oxidant. Recently, some significant advances have been reported by chemists and so Pd-catalyzed allylic C—H activations for the construction of C—C and C—X bonds have become a hot topic in the chemical community. A series of novel reactions based on new catalytic systems have been developed to produce useful molecules and complex natural products. The control of branch/linear selectivity and enantioselectivity has also been realized in the latest reports. Related work in this field is reviewed in this paper from the viewpoint of alkene substrates and nucleophiles. Pd(Ⅱ)-catalyzed asymmetric allylic C—H functionalizations are also introduced. The advantages and disadvantages of different kinds of catalytic systems (including DMSO, bissulfoxide, PPh3 and phosphoramidate as ligands) are discussed. Finally, pathways for future developments have been proposed.
  • 加载中
    1. [1]

      Godleski, S. A. In Comprehensive Organic Synthesis, Eds.: Trost, B. M.; Fleming, I., Pergamon Press, New York, 1991, p. 585.(b) Tsuji, J. Transition Metal Reagents and Catalysts, Wiley, New York, 2000.(c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.(d) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747.(e) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.

    2. [2]

       

    3. [3]

      For selected recent papers:(a) Ozawa, F.; Okamoto, H.; Kawagishi, K.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.(b) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.(c) Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. J. Am. Chem. Soc. 2011, 133, 19354.(d) Wu, X.-S.; Chen, Y.; Li, M.-B.; Zhou, M.-G.; Tian, S.-K. J. Am. Chem. Soc. 2012, 134, 14694.(e) Li, M.-B.; Wang, Y.; Tian, S.-K. Angew. Chem., Int. Ed. 2012, 51, 2968.(f) Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A. Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255.(g) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776.(h) Banerjee, D.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 13049.(i) Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570.(j) Wu, X.; Lin, H.-C.; Li, M.-L.; Li, L.-L.; Han. Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 13476. 

    4. [4]

    5. [5]

      Parshall, G.; Wilkinson, G. Inorg. Chem. 1962, 1, 896.

    6. [6]

      Trost, B. M.; Fullerton, T. J. Am. Chem. Soc. 1973, 95, 292. 

    7. [7]

      Beccalli, E.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318.

    8. [8]

      Heumann, A.; Reglier, M.; Waegell, B. Angew. Chem., Int. Ed. Eng. 1982, 21, 366.(b) Heumann, A.; Kermark, B. Angew. Chem., Int. Ed. Engl. 1984, 23, 453.(c) McMurry, J.; Kocovsky, P. Tetrahedron Lett. 1984, 25, 4187. 

    9. [9]

      Franzén, J.; Backväll, J.-E. J. Am. Chem. Soc. 2003, 125, 6056.

    10. [10]

      Piera, J.; Närhi, K.; Backväll, J.-E. Angew. Chem., Int. Ed. 2006, 45, 6914.

    11. [11]

      Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346. 

    12. [12]

      Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006, 128, 9032. 

    13. [13]

      Covell, D. J.; Vermeulen, N. A.; Laben, N. A.; White, M. C. Angew. Chem., Int. Ed. 2006, 45, 8217. 

    14. [14]

      Gormisky, P.; White, M. C. J. Am. Chem. Soc. 2011, 133, 12584. 

    15. [15]

      Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176. 

    16. [16]

      Ammann, S. E.; Rice, G. T.; White, M. J. Am. Chem. Soc. 2014, 136, 10834. 

    17. [17]

      Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274. 

    18. [18]

      Wu, L.; Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707.

    19. [19]

      Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707. 

    20. [20]

      Strambeanu, I. I.; White, M. C. J. Am. Chem. Soc. 2013, 135, 12032. 

    21. [21]

      Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008, 47, 4733. 

    22. [22]

      Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130, 3316. 

    23. [23]

      Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 7496.(b) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590. 

    24. [24]

      Lin, S.; Song, C.-X.; Cai, G.-X.; Wang, W.-H.; Shi, Z.-J. J. Am. Chem. Soc. 2008, 130, 12901.

    25. [25]

      Young, A. J.; White, M. C. J. Am. Chem. Soc. 2008, 130, 14090. 

    26. [26]

      Young, A. J.; White, M. C. Angew. Chem., Int. Ed. 2011, 50, 6824. 

    27. [27]

      Howell, J. M.; Liu, W.; Young, A. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 5750. 

    28. [28]

      Trost, B. M.; Hansmann, M. M.; Thaisrivongs, D. A. Angew. Chem., Int. Ed. 2012, 51, 4950. 

    29. [29]

      Trost, B. M.; Thaisrivongs, D. A.; Hansmann, M. M. Angew. Chem., Int. Ed. 2012, 51, 11522. 

    30. [30]

      Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008, 47, 6448. 

    31. [31]

      Wang, P.-S.; Liu, P.; Zhai, Y.-J.; Lin, H.-C.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 12732.

    32. [32]

      Trost, B. M.; Thaisrivongs, D. A.; Donckele, E. J. Angew. Chem., Int. Ed. 2013, 52, 1523. 

    33. [33]

      Tang, S.; Wu, X.; Liao, W.; Liu, K.; Liu, C.; Luo, S.; Lei, A. Org. Lett. 2014, 16, 3584.

    34. [34]

      Wang, P.-S.; Lin, H.-C.; Zhai, Y.-J.; Han, Z.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 12218.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    6. [6]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    9. [9]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    10. [10]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    11. [11]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    12. [12]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    14. [14]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    15. [15]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    16. [16]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(0)
  • Abstract views(2469)
  • HTML views(614)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return