Citation: Dou Rongfei, Tan Xiaohe, Fan Yiqiu, Pei Yan, Qiao Minghua, Fan Kangnian, Sun Bin, Zong Baoning. Study on Ru-B/MIL-53(AlxCr1) Catalysts for Partial Hydrogenation ofBenzene to Cyclohexene[J]. Acta Chimica Sinica, ;2016, 74(6): 503-512. doi: 10.6023/A16020074 shu

Study on Ru-B/MIL-53(AlxCr1) Catalysts for Partial Hydrogenation ofBenzene to Cyclohexene

  • Corresponding author: Qiao Minghua, mhqiao@fudan.edu.cn Zong Baoning, zongbn.ripp@sinopec.com
  • Received Date: 1 February 2016

    Fund Project: Science and Technology Commission of Shanghai Municipality  08DZ2270500the National Key Basic Research Program of China 2012CB224804Beijing Synchrotron Radiation Facility, and the China Petroleum & Chemical Corporation S411063the National Natural Science Foundation of China 21373055

Figures(12)

  • Metal-organic frameworks (MOFs) have attracted enormous research interests not only because of their merits such as high specific surface area, high porosity, and regular pore channels, but also due to their peculiarities of extremely abundant chemical and structural diversity and tunability. In this work, we synthesized MIL-53(Al) and MIL-53(Cr) containing one coordination metal and the novel MIL-53(AlxCr1)(x=1, 2, 3, and 4) MOFs containing two coordination metals as the supports for the Ru-B/MIL-53 catalysts, which were prepared by the facile impregnation-chemical reduction method. In the challenging partial hydrogenation of benzene to cyclohexene, it is revealed that the Al/Cr ratio had pronounced influences on both the initial hydrogenation rate (r0) and the initial selectivity to cyclohexene (S0). In general, MIL-53 containing a higher fraction of Al affords a higher r0, while MIL-53 containing both Al and Cr is conducive to a higher S0 than either MIL-53(Al) or MIL-53(Cr) containing only one coordination metal. On the Ru-B/MIL-53(Al3Cr1) catalyst exhibiting the highest selectivity to cyclohexene, the r0 and S0 were 9.2 mmol/(min·g) and 71%, respectively. The best Ru-B/MIL-53(Al3Cr1) catalyst and the Ru-B/MIL-53(Cr) catalyst displaying the lowest selectivity to cyclohexene were comparatively characterized to have an insight into the difference in their catalytic performance. It is found that while both catalysts had similar Ru/B molar ratio, electronic property, and microstructure, the Ru-B/MIL-53(Al3Cr1) catalyst had higher active surface area (Sact), smaller and more highly dispersed Ru-B nanoparticles (NPs), and stronger metal-support interaction than the Ru-B/MIL-53(Cr) catalyst. The smaller Ru-B NPs could not only provide more active sites for the hydrogenation of benzene, but also be beneficial to the formation of cyclohexene. By further optimization of the reaction conditions, at 180 ℃, H2 pressure of 5.0 MPa, and using 100 mL of ethanolamine as the modifier, a cyclohexene yield of 29% was obtained over the Ru-B/MIL-53(Al3Cr1) catalyst.
  • 加载中
    1. [1]

      Zhou, G. B.; Tan, X. H.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. ChemCatChem 2013, 5, 2425.  doi: 10.1002/cctc.201300175

    2. [2]

      Odenbrand, C. U. I.; Andersson, S. L. T. J. Chem. Technol. Biotechnol. 1982, 32, 365.
       

    3. [3]

      Wang, J. Q.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Fan, K. N. Acta Chim. Sinica 2004, 62, 1765.
       

    4. [4]

      Wang, W. T.; Liu, H. Z.; Ding, G. D.; Zhang, P.; Wu, T. B.; Jiang, T.; Han, B. X. ChemCatChem 2012, 4, 1836.  doi: 10.1002/cctc.v4.11

    5. [5]

      Wang, J. Q.; Wang, Y. Z.; Xie, S. H.; Qiao, M. H.; Li, H. X.; Fan, K. N. Appl. Catal. A 2004, 272, 29.  doi: 10.1016/j.apcata.2004.04.038

    6. [6]

      Huang, G.; Chen, Y. Z.; Jiang, H. L. Acta Chim. Sinica 2016, 74, 113.  doi: 10.6023/A15080547
       

    7. [7]

      Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.  doi: 10.1126/science.1083440

    8. [8]

      Sun, L.; Deng, W. Q. Acta Chim. Sinica 2015, 73, 579.  doi: 10.6023/A15030192
       

    9. [9]

      Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.  doi: 10.1039/b802426j

    10. [10]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.  doi: 10.1039/b807080f

    11. [11]

      Ren, H.; Zhu, G. S. Acta Chim. Sinica 2015, 73, 587.  doi: 10.6023/A15010071
       

    12. [12]

      Liu, Y.; Mo, K.; Cui, Y. Inorg. Chem. 2013, 52, 10286.  doi: 10.1021/ic400598x

    13. [13]

      Uemura, T.; Kitaura, R.; Ohta, Y.; Nagaoka, M.; Kitagawa, S. Angew. Chem. Int. Ed. 2006, 45, 4112.  doi: 10.1002/(ISSN)1521-3773

    14. [14]

      Zhao, H. H.; Song, H. L.; Chou, L. J. Inorg. Chem. Commun. 2012, 15, 261.  doi: 10.1016/j.inoche.2011.10.040

    15. [15]

      Wan, Y.; Chen, C.; Xiao, W. M.; Jian, L. J.; Zhang, N. Microporous Mesoporous Mater. 2013, 171, 9.  doi: 10.1016/j.micromeso.2013.01.005

    16. [16]

      Guo, Z. Y.; Xiao, C. X.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X. L.; Tesfagaber, D.; Thiel, A.; Huang, W. Y. ACS Catal. 2014, 4, 1340.  doi: 10.1021/cs400982n

    17. [17]

      Luz, I.; Rösler, C.; Epp, K.; Xamena, F. L.; Fischer, R. Eur. J. Inorg. Chem. 2015, 23, 3904.
       

    18. [18]

      Chen, D. C.; Huang, M.; He, S.; He, S. L.; Ding, L. P.; Wang, Q.; Yu, S. M.; Miao, S. D. Appl. Clay Sci. 2016, 119, 109.  doi: 10.1016/j.clay.2015.07.011

    19. [19]

      Tan, X. H.; Zhou, G. B.; Dou, R. F.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. Acta Phys.-Chim. Sin. 2014, 30, 932.
       

    20. [20]

      Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Louër D.; Férey, G. J. Am. Chem. Soc. 2002, 124, 13519.  doi: 10.1021/ja0276974

    21. [21]

      Loiseau, T.; Serre, C.; Huguenard, C.; Fink, G.; Taulelle, F.; Henry, M.; Bataille, T.; Férey, G. Chem.-Eur. J. 2004, 10, 1373.  doi: 10.1002/(ISSN)1521-3765

    22. [22]

      Zhao, Y. J.; Zhang, J. L.; Han, B. X.; Song, J. L.; Li, J. S.; Wang, Q. Angew. Chem. Int. Ed. 2011, 50, 636.  doi: 10.1002/anie.v50.3

    23. [23]

      Liu, H. Z.; Liang, S. G.; Wang, W. T.; Jiang, T.; Han, B. X. J. Mol. Catal. A 2011, 341, 35.  doi: 10.1016/j.molcata.2011.03.021

    24. [24]

      Millange, F.; Serre, C.; Férey, G. Chem. Commun. 2002, (8), 822.  doi: 10.1039/b201381a

    25. [25]

      Sun, Z. G.; Li, G.; Liu, L. P.; Liu, H. O. Catal. Commun. 2012, 27, 200.  doi: 10.1016/j.catcom.2012.07.017

    26. [26]

      Liu, J. L.; Zhu, L. J.; Pei, Y.; Zhuang, J. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal. A 2009, 353, 282.  doi: 10.1016/j.apcata.2008.10.056

    27. [27]

      Larichev, Y. V.; Moroz, B. L.; Zaikovskii, V. I.; Yunusov, S. M.; Kalyuzhnaya, E. S.; Shur, V. B.; Bukhtiyarov, V. I. J. Phys. Chem. C 2007, 111, 9427.  doi: 10.1021/jp066970b

    28. [28]

      Mazzieri, V.; Coloma-Pascual, F.; Arcoya, A.; L'Argentière, P.; Fıgoli, N. Appl. Surf. Sci. 2003, 210, 222.  doi: 10.1016/S0169-4332(03)00146-6

    29. [29]

      Xie, S. H.; Qiao, M. H.; Li, H. X.; Wang, W. J.; Deng, J. F. Appl. Catal. A 1999, 176, 129.  doi: 10.1016/S0926-860X(98)00232-4

    30. [30]

      Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Chem. Soc. Rev. 2012, 41, 8140.  doi: 10.1039/c2cs35182j

    31. [31]

      Pei, Y.; Guo, P. J.; Qiao, M. H.; Li, H. X.; Wei, S. Q.; He, H. Y.; Fan, K. N. J. Catal. 2007, 248, 303.  doi: 10.1016/j.jcat.2007.03.024

    32. [32]

      Wang, X. G.; Yan, W. S.; Zhong, W. J.; Zhang, X. Y.; Wei, S. Q. Chem. J. Chin. Univ. 2001, 22, 349.
       

    33. [33]

      Bu, J.; Wang, J. Q.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Fan, K. N. Acta Chim. Sinica 2007, 65, 1338.
       

    34. [34]

      Ronchin, L.; Toniolo, L. Catal. Today 1999, 48, 255.  doi: 10.1016/S0920-5861(98)00380-0

    35. [35]

      Schwab, F.; Lucas, M.; Claus, P. Angew. Chem. Int. Ed. 2011, 50, 10453.  doi: 10.1002/anie.201104959

    36. [36]

      Spod, H.; Lucas, M.; Claus, P. Catalysts 2015, 5, 1756.  doi: 10.3390/catal5041756

    37. [37]

      Sun, H. J.; Li, S. H.; Zhang, Y. X.; Jiang, H. B.; Qu, L. L.; Liu, S. C. Liu, Z. Y. Chin. J. Catal. 2013, 34, 1482.  doi: 10.1016/S1872-2067(12)60637-8

    38. [38]

      Zhou, G. B.; Dou, R. F.; Bi, H. Z.; Xie, S. H.; Pei, Y.; Fan, K. N.; Qiao, M. H.; Sun, B.; Zong, B. N. J. Catal. 2015, 332, 119.  doi: 10.1016/j.jcat.2015.09.016

    39. [39]

      Trung, T. K.; Trens, P.; Tanchoux, N.; Bourrelly, S.; Llewellyn, P. L.; Loera-Serna, S.; Serre, C.; Loiseau, T.; Fajula, F. O.; Férey, G. R. J. Am. Chem. Soc. 2008, 130, 16926.  doi: 10.1021/ja8039579

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(0)
  • Abstract views(539)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return