Citation: Chen Jinping, Du Xinfeng, Yu Tianjun, Zeng Yi, Zhang Xiaohui, Li Yi. Ligand Substituent Effects on Rhenium Tricarbonyl Catalysts in CO2 Reduction[J]. Acta Chimica Sinica, ;2016, 74(6): 523-528. doi: 10.6023/A16010067 shu

Ligand Substituent Effects on Rhenium Tricarbonyl Catalysts in CO2 Reduction

  • Corresponding author: Chen Jinping, chenjp@mail.ipc.ac.cn Li Yi, yili@mail.ipc.ac.cn
  • Received Date: 29 January 2016

    Fund Project: the National Natural Science Foundation of China 21233011the National Natural Science Foundation of China 21472201the National Basic Research Program 2013CB834505the National Natural Science Foundation of China 21573266the National Basic Research Program 2013CB834700

Figures(7)

  • The Re (I) complexes originally reported by Lehn et al. is one of the most important catalysts used for photocatalytical reduction of CO2 in homogeneous system. The mechanism for the photocatalytic reduction of CO2 to CO with Re (I) complexes has been thoroughly investigated recently. In this study, a series of rhenium tricarbonyl catalysts (Re-Me, Re-Ac, Re-Qa and Re-Im) with different substituents on 2, 2-bipyridine ligand were synthesized and characterized. These catalysts were successfully applied to a light induced CO2 reduction system with triethanolamine (TEOA) as sacrificial reagent, exhibiting different turnover numbers for different catalysts. The highest turnover number was achieved for the catalyst of Re-Qa, and Re-Me and Re-Ac exhibit similar activity, while Re-Im exhibits almost no activity in the photocatalytic conversion of CO2 to CO. UV-vis spectra show that the rate of deactivation is linked to the decomposition of the catalysts in the photocatalytic system. No decomposition was observed in the absence of TEOA, suggesting that the deactivation occurs via the intermediate of one-electron-reduced (OER) species. The transient absorption spectra conformed the formation of OER in the catalytic system. The reasons for the highest turnover number of Re-Qa may be attributed to the quaternary ammonium salt group, which can serve as a mediator to facilitate the reduction process. While in the case of Re-Im, the imidazolium group might accelerate the deactivation of OER species by an intramolecular interaction. Further experiments on this effect are the subject of ongoing investigations.
  • 加载中
    1. [1]

      Takeda, H.; Ishitani, O. Coord. Chem. Rev. 2010, 254, 346; (b) Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Angew. Chem., Int. Ed. 2013, 52, 7372; (c) Tahir, M.; Amin, N. S. Renew. Sust. Energ. Rev. 2013, 25, 560; (d) Chen, J. P.; Du, X. F.; Yu, T. J.; Zeng, Y.; Zhang, X. H.; Li, Y. Imag. Sci. Photochem. 2015, 33, 358.(陈金平, 都新丰, 于天君, 曾毅, 张小辉, 李嫕, 影像科学与光化学, 2015, 33, 358.)

    2. [2]

      Fujita, E. Coord. Chem. Rev. 1999, 185-6, 373.

    3. [3]

      Hawecker, J.; Lehn, J. M.; Ziessel, R. J. Chem. Soc., Chem. Comm. 1983, 536.

    4. [4]

      Sullivan, B. P.; Meyer, T. J. Organometallics 1986, 5, 1500; (b) Gibson, D. H.; Yin, X. L. J. Am. Chem. Soc. 1998, 120, 11200; (c) Gibson, D. H.; Yin, X. L.; He, H. Y.; Mashuta, M. S. Organometallics 2003, 22, 337; (d) Hayashi, Y.; Kita, S.; Brunschwig, B. S.; Fujita, E. J. Am. Chem. Soc 2003, 125, 11976.

    5. [5]

      Kou, Y.; Nabetani, Y.; Masui, D.; Shimada, T.; Takagi, S.; Tachibana, H.; Inoue, H. J. Am. Chem. Soc. 2014, 136, 6021.  doi: 10.1021/ja500403e

    6. [6]

      Morimoto, T.; Nishiura, C.; Tanaka, M.; Rohacova, J.; Nakagawa, Y.; Funada, Y.; Koike, K.; Yamamoto, Y.; Shishido, S.; Kojima, T.; Saeki, T.; Ozeki, T.; Ishitani, O. J. Am. Chem. Soc. 2013 135, 13266.  doi: 10.1021/ja406144h

    7. [7]

      Meister, S.; Reithmeier, R. O.; Tschurl, M.; Heiz, U.; Rieger, B. ChemCatChem 2015, 7, 690.  doi: 10.1002/cctc.201402984

    8. [8]

      Manbeck, G. F.; Muckerman, J. T.; Szalda, D. J.; Himeda, Y.; Fujita, E. J. Phys. Chem. B 2015, 119, 7457; (b) Benson, E. E.; Grice, K. A.; Smieja, J. M.; Kubiak, C. P. Polyhedron 2013, 58, 229.

    9. [9]

      Oh, Y.; Hu, X. Chem. Soc. Rev. 2013, 42, 2253; (b) Taniguchi, I.; Aurianblajeni, B.; Bockris, J. O. J. Electroanal. Chem. 1984, 161, 385.

    10. [10]

      Kalyanasundaram, K. J. Chem. Soc. Faraday Trans. 2 1986, 82, 2401.

    11. [11]

      Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc. Chem. Commun. 1985, 1414.

    12. [12]

      Smieja, J. M.; Kubiak, C. P. Inorg. Chem. 2010, 49, 9283.  doi: 10.1021/ic1008363

    13. [13]

      Kamber, N. E.; Tsujii, Y.; Keets, K.; Waymouth, R. M.; Pratt, R. C.; Nyce, G. W.; James, L.; Hedrick, J. L. J. Chem. Educ. 2010, 87, 519; (b) Gu, S.; Huang, J.; Chen, W. Chin. J. Org. Chem. 2013, 33, 715.(顾绍金, 黄菁菁, 陈万芝, 有机化学, 2013, 33, 715.)

    14. [14]

      Dellaciana, L.; Hamachi, I.; Meyer, T. J. J. Org. Chem. 1989, 54, 1731.  doi: 10.1021/jo00268a042

    15. [15]

      Xun, Z.; Yu, T.; Zeng, Y.; Chen, J.; Zhang, X.; Yang, G.; Li, Y. J. Mater. Chem. A 2015, 3, 12965.  doi: 10.1039/C5TA02565F

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(0)
  • Abstract views(955)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return