Citation: Xu Yanglei, Meng Zheyi, Zhai Jin. pH and Calcium Cooperative Regulation Nanofluidic Gating Device[J]. Acta Chimica Sinica, ;2016, 74(6): 538-544. doi: 10.6023/A16010053 shu

pH and Calcium Cooperative Regulation Nanofluidic Gating Device

  • Corresponding author: Zhai Jin, zhaijin@buaa.edu.cn
  • Received Date: 25 January 2016

    Fund Project: the National Basic Research Program of China 2012CB720904the National Natural Science Foundation of China 21271016

Figures(8)

  • In living body, Ca2+-responsive ion channels play crucial roles in many biological activities. Inspired by nature, the design and fabrication of artificial smart nanochannels system become a very significant research subject, mimicking the biological Ca2+-responsive signals in ion channels. In this article, by using track-etched artificial polyethylene terephthalate (PET) multiporous membrane materials and modifying intelligent molecules O-Phospho-L-tyrosine (OPLT) through chemical modification method, we demonstrate a new biomimetic artificial smart responsive ion channel system, which presents the cooperative response to pH and calcium. The nanosystem shows ion selective transport, ion gating and ion rectification property, which is similar to the property of biological Ca2+-responsive ion channels. And the cooperative responsive property of pH and calcium in OPLT modified nanochannels was also investigated by measuring the current-voltage (I-V) curves. At a low pH value, the surface charge of the nanochannels walls is positive as a result of the amino group (NH3+) of OPLT, the nanosystem attracts the anions and inhibits the cations due to electrostatic interactions between the anions passing through the nanochannels and the nanochannels cations walls, resulting in ion current rectification property. Meanwhile, after adding calcium to the nanosystem, no significant changes of ion current are found. The system presents no calcium responsive property. At a high pH value, the surface charge of the nanochannels walls is negative due to the phosphate group (HPO42-) of OPLT, the nanosystem shows cations-selective. After adding calcium to the solution, the bonding of phosphate group (HPO42-) with calcium (Ca2+) results in the neutralization of the surface charge in the nanochannels. This nanochannels switch the polarity of ion transport from cation-selective to non-selective, and turn from the highly conductive state to the low conductive state. The significant decline of the ion current can be observed. Thus, the OPLT modified nanofluidic gating device displays the cooperative effect of pH and calcium. This system provides a new idea for the multiple signal induced ion gating in conical nanochannel devices.
  • 加载中
    1. [1]

      Clapham, D. E. Cell 2007, 131, 1047.  doi: 10.1016/j.cell.2007.11.028

    2. [2]

      Matulef, K.; Zagotta, W. N. Annu. Rev. Cell Dev. Biol. 2003, 19, 23.  doi: 10.1146/annurev.cellbio.19.110701.154854

    3. [3]

      Liao, J.; Li, H.; Zeng, W. Z.; Sauer, D. B.; Belmares, R.; Jiang, Y. X. Science 2012, 335, 686.  doi: 10.1126/science.1215759

    4. [4]

      Berridge, M. J.; Bootman, M. D.; Roderick, H. L. Nat. Rev. Mol. Cell Biol. 2003, 4, 517.

    5. [5]

      Methfessel, C.; Boheim, G. Biophys. Struct. Mech. 1982, 9, 35.  doi: 10.1007/BF00536014

    6. [6]

      Saimi, Y.; Kung, C. Annu. Rev. Physiol. 2002, 64, 289.  doi: 10.1146/annurev.physiol.64.100301.111649

    7. [7]

      Eismann, E.; Muller, F.; Heinemann, S. H.; Kaupp, U. B. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1109.  doi: 10.1073/pnas.91.3.1109

    8. [8]

      McNally, B.; Somasundaram, A.; Yamashita, M.; Prakriya, M. Nature 2012, 482, 241.

    9. [9]

      Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W. ACS Nano 2012, 6, 9247.  doi: 10.1021/nn303669g

    10. [10]

      Siwy, Z. S.; Powell, M. R.; Petrov, A.; Kalman, E.; Trautmann, C.; Eisenberg, R. S. Nano Lett. 2006, 6, 1729.  doi: 10.1021/nl061114x

    11. [11]

      Deniaud, A.; Rossi, C.; Berquand, A.; Homand, J.; Campagna, S.; Knoll, W.; Brenner, C.; Chopineau, J. Langmuir 2007, 23, 3898.  doi: 10.1021/la063105+

    12. [12]

      Siwy, Z. S.; Powell, M. R.; Kalman, E.; Astumian, R. D.; Eisenberg, R. S. Nano Lett. 2006, 6, 473.  doi: 10.1021/nl0524290

    13. [13]

      Vilozny, B.; Actis, P.; Seger, R. A.; Vallmajo-Martin, Q.; Pourmand, N. Anal. Chem. 2011, 83, 6121.  doi: 10.1021/ac201322v

    14. [14]

      He, Y.; Gillespie, D.; Boda, D.; Vlassiouk, I.; Eisenberg, R.; Siwy, Z. S. J. Am. Chem. Soc. 2009, 131, 5194.  doi: 10.1021/ja808717u

    15. [15]

      García-Gimenez, E.; Alcaraz, A.; Aguilella, V. M.; Ramírez, P. J. Membr. Sci. 2009, 331, 137.  doi: 10.1016/j.memsci.2009.01.026

    16. [16]

      Powell, M. R.; Sullivan, M.; Vlassiouk, I.; Constantin, D.; Sudre, O.; Martens, C. C.; Eisenberg, R. S.; Siwy, Z. S. Nat. Nanotechnol. 2008, 3, 51.  doi: 10.1038/nnano.2007.420

    17. [17]

      Hou, X.; Guo, W.; Jiang, L. Chem. Soc. Rev. 2011, 40, 2385.  doi: 10.1039/c0cs00053a

    18. [18]

      Regonda, S.; Tian, R.; Gao, J.; Greene, S.; Ding, J.; Hu, W. Biosens. Bioelectron. 2013, 45, 245.  doi: 10.1016/j.bios.2013.01.027

    19. [19]

      Tian, Y.; Jiang, L. Sci. China Chem. 2011, 54, 603.

    20. [20]

      Xiao, K.; Xie, G. H.; Li, P.; Liu, Q.; Hou, G. L.; Zhang, Z.; Ma, J.; Tian, Y.; Wen, L. P.; Jiang, L. Adv. Mater. 2014, 26, 6560.  doi: 10.1002/adma.v26.38

    21. [21]

      Hou, X.; Guo, W.; Nie, F. Q.; Dong, H.; Tian, Y.; Wen, L. P.; Wang, L.; Cao, L. X.; Yang, Y.; Xue, J. M.; Song, Y. L.; Wang, Y. G.; Liu, D. S.; Jiang, L. J. Am. Chem. Soc. 2009, 131, 7800.  doi: 10.1021/ja901574c

    22. [22]

      Xie, G. H.; Xiao, K.; Zhang, Z.; Kong, X. Y.; Liu, Q.; Li, P.; Wen, L. P.; Jiang, L. Angew. Chem., Int. Ed. 2015, 54, 13664.

    23. [23]

      Gao, J.; Guo, W.; Feng, D.; Wang, H. T.; Zhao, D. Y.; Jiang, L. J. Am. Chem. Soc. 2014, 136, 12265.  doi: 10.1021/ja503692z

    24. [24]

      Hou, X.; Jiang, L. Physics 2011, 40, 304.

    25. [25]

      Guo, W.; Jiang, L. Sci. Sin. Chim. 2011, 41, 1257.  doi: 10.1360/032011-186

    26. [26]

      Zhou, D.; Meng, Z. Y.; Zhang, M. H.; Zhai, J. Acta Chim. Sinica 2015, 73, 716.  doi: 10.6023/A15030217
       

    27. [27]

      Meng, Z. Y.; Bao, H.; Wang, J. T.; Jiang, C. D.; Zhang, M. H.; Zhai, J.; Jiang, L. Adv. Mater. 2014, 26, 2329.  doi: 10.1002/adma.v26.15

    28. [28]

      Xu, Y. L.; Sui, X.; Guan, S.; Zhai, J.; Gao, L. C. Adv. Mater. 2015, 27, 1851.  doi: 10.1002/adma.v27.11

    29. [29]

      Xu, Y. L.; Zhang, M. H.; Tian, T.; Shang, Y.; Meng, Z. Y.; Jiang, J. Q.; Zhai, J.; Wang, Y. NPG Asia Mater. 2015, 7, e215.  doi: 10.1038/am.2015.98

    30. [30]

      Zhang, W. J.; Meng, Z. Y.; Zhai, J.; Heng, L. P. Chem. Commun. 2014, 50, 3552.  doi: 10.1039/c3cc47999d

    31. [31]

      Apel, P. Y.; Korchev, Y. E.; Siwy, Z.; Spohr, R.; Yoshida, M. Nucl. Instrum. Methods Phys. Res., Sect. B 2001, 184, 337.  doi: 10.1016/S0168-583X(01)00722-4

    32. [32]

      Siwy, Z.; Fulinski, A. Phys. Rev. Lett. 2002, 89, 198103.  doi: 10.1103/PhysRevLett.89.198103

    33. [33]

      Hou, X.; Zhang, H. C.; Jiang, L. Angew. Chem., Int. Ed. 2012, 51, 5296.

    34. [34]

      Siwy, Z. S. Adv. Funct. Mater. 2006, 16, 735.  doi: 10.1002/(ISSN)1616-3028

    35. [35]

      Hou, X.; Dong, H.; Zhu, D. B.; Jiang, L. Small 2010, 6, 361.  doi: 10.1002/smll.v6:3

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    13. [13]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    14. [14]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    15. [15]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    16. [16]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(0)
  • Abstract views(1144)
  • HTML views(235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return