Citation: Gao Guanbin, Gong Dejun, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: A New Near-Infrared Fluorescent Probe[J]. Acta Chimica Sinica, ;2016, 74(4): 363-368. doi: 10.6023/A16010038 shu

Chiral Gold Nanoclusters: A New Near-Infrared Fluorescent Probe

  • Corresponding author: Zhang Mingxi,  Sun Taolei, 
  • Received Date: 19 January 2016

    Fund Project: 项目受国家杰出青年基金项目(No. 51325302) (No. 51325302)国家自然科学基金项目(Nos. 51533007, 51521001)资助. (Nos. 51533007, 51521001)

  • Near-infrared (NIR) fluorescence facilitates noninvasive bio-imaging because it involves less interference from blood and tissue auto-fluorescence and high transparency. Nowadays, the research of new NIR fluorescent probes with favorable biocompatibility, high quantum yield, high stability and long-wavelength emission band has become the focus of bio-nanotechnology. Herein, we introduced NIBC enantiomers onto the surface of gold nanoclusters and synthesized chiral gold nanoclusters anchored with N-isobutyryl-L-cysteine (L-NIBC-AuNCs) and N-isobutyryl-D-cysteine (D-NIBC-AuNCs), respectively. Transmission electron microscopy (TEM images) of the L-NIBC-AuNCs and D-NIBC-AuNCs reveal that the particle sizes of both two AuNCs are around 1.9±0.7 nm. The UV-Vis absorption spectra of L-NIBC-AuNCs and D-NIBC-AuNCs are basically identical and both two AuNCs have characteristic absorption peaks at 580 nm and 680 nm. Compared with the FT-IR spectra of NIBC, the vanishing of the S—H stretching vibration at the 2500~2600 cm-1 in the FT-IR spectra of L-NIBC-AuNCs and D-NIBC-AuNCs indicate that L-NIBC and D-NIBC have successfully anchored on to the surface of Au core by Au—S bond. The circular dichroism (CD) spectra of L-NIBC-AuNCs and D-NIBC-AuNCs show nearly a mirror image relationship at 230~360 nm, which means the chirality signal transmitted from molecular level to nanoscale level. Most important of all, both two water-soluble nanoclusters have fluorescence emission bands between 900~1000 nm which belong to the near infrared bands. And the fluorescence quantum yields of L-NIBC-AuNCs and D-NIBC-AuNCs are 6.9% and 8.2%, respectively. Cell toxicity experiments show that both two kinds of gold nanoclusters have no cytotoxicity even at the high concentration of 100 mg/L. Moreover, these gold nanoclusters also have unique chiroptical activity and potential chiral recognition ability. Based on the experiment mentioned above, these kinds of chiral gold nanoclusters can be used as a new kind of near-infrared fluorescent probe, which may have promising application in the near-infrared fluorescent imaging. These findings provide an interesting insight in the near-infrared fluorescence (NIRF) imaging techniques.
  • 加载中
    1. [1]

      [1] (a) Ralph, W.; Ching-Hsuan, T.; Umar, M.; Alexei, B. Jr. Nat. Biotechnol. 1999, 17, 375.

    2. [2]

      (b) Weissleder, R.; Pittet, M. J. Nature 2008, 452, 580.

    3. [3]

      (c) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2012, 42, 622.

    4. [4]

      (d) Wang, X.; Chang, G.; Cao, R.; Meng, L. Prog. Chem. 2015, 27, 794. (王晓驰, 常刚, 曹瑞军, 孟令杰, 化学进展, 2015, 27, 794. )

    5. [5]

      (e) Yu, H.; Li, H.; Zhang, X.; Xiao, Y.; Fang, P.; Lv, C.; Hou, W. Acta Chim. Sinica 2015, 73, 450. (于海波, 李红玲, 张新富, 肖义, 方沛菊, 吕春娇, 侯伟, 化学学报, 2015, 73, 450. )

    6. [6]

      [2] (a) Han, J.; Burgess, K. Chem. Rev. 2010, 110, 2709.

    7. [7]

      (b) Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. Biomaterials 2011, 32, 7127.

    8. [8]

      (c) Guo, Z. Q.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2012, 42, 622.

    9. [9]

      (d) Yuan, A.; Wu, J.; Tang, X.; Zhao, L.; Xu, F.; Hu, Y. J. Pharm. Sci. 2013, 102, 6.

    10. [10]

      (e) Ni, Y.; Wu, J. Org. Biomol. Chem. 2014, 12, 3774.

    11. [11]

      [3] (a) Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Ishimura, K. Adv. Funct. Mater. 2012, 22, 3539.

    12. [12]

      (b) Li, C.; Cao, L.; Zhang, Y.-J.; Yi, P.; Wang, M.; Tan, B.; Deng, Z.; Wu, D.; Wang, Q. Small 2015, 11, 4517.

    13. [13]

      [4] (a) Hilderbrand, S. A.; Weissleder, R. Curr. Opin. Chem. Biol. 2010, 14, 71.

    14. [14]

      (b) Gu, Y.-P.; Cui, R.; Zhang, Z.-L.; Xie, Z.-X.; Pang, D.-W. J. Am. Chem. Soc. 2012, 134, 79.

    15. [15]

      (c) Cui, X.; Lv, Y.; Liu, Y.; Wu, B. Acta Chim. Sinica 2014, 72, 1. (崔晓腾, 吕玉洋, 刘颖, 吴伯岳, 化学学报, 2014, 72, 1.)

    16. [16]

      [5] (a) Qian, G.; Wang, Z. Y. Chem. Asian J. 2010, 5, 1006.

    17. [17]

      (b) Shen, S.; Wang, Q. Chem. Mater. 2013, 25, 1166.

    18. [18]

      (c) Ding, X.; Liow, C.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J. J. Am. Chem. Soc. 2014, 136, 15684.

    19. [19]

      (d) Li, X.; Zhang, F.; Zhao, D. Chem. Soc. Rev. 2015, 44, 1346.

    20. [20]

      (e) Yang, W.; Guo, W.; Zhang, B.; Chang, J. Acta Chim. Sinica 2014, 72, 1209. (杨维涛, 郭伟圣, 张兵波, 常津, 化学学报, 2014, 72, 1209.)

    21. [21]

      [6] (a) Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11600.

    22. [22]

      (b) Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Nano Lett. 2008, 8, 586.

    23. [23]

      (c) Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. Nat. Nanotechnol. 2009, 4, 773.

    24. [24]

      (d) Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8943.

    25. [25]

      (e) Robinson, J. T.; Hong, G.; Liang, Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. Am. Chem. Soc. 2012, 134, 10664.

    26. [26]

      (f) Hong, G.; Diao, S.; Chang, J.; Antaris, A. L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I.; Kuo, C. J.; Dai, H. Nat. Photonics 2014, 8, 723.

    27. [27]

      [7] (a) Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. J. Am. Chem. Soc. 2010, 132, 1470.

    28. [28]

      (b) Zhang, Y.; Hong, G.; Zhang, Y.-J.; Chen, G.; Li, F.; Dai, H.; Wang, Q. ACS Nano 2012, 6, 3695.

    29. [29]

      (c) Hong, G.; Robinson, J. T.; Zhang, Y.-J.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. Angew. Chem., Int. Ed. 2012, 51, 9956.

    30. [30]

      (d) Zhang, Y.; Zhang, Y.-J.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biomaterials 2013, 34, 393.

    31. [31]

      (e) Li, C.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. Biomaterials 2014, 35, 3639.

    32. [32]

      (f) Li, C.; Li, F.; Zhang, Y.-J.; Zhang, W.; Zhang, X.; Wang, Q. ACS Nano 2015, 9, 12255.

    33. [33]

      (g) Hu, F.; Li, C.; Zhang, Y.-J.; Wang, M.; Wu, D.; Wang, Q. Nano Res. 2015, 8, 1637.

    34. [34]

      [8] Cyrille, G.; Thomas, B. J. Am. Chem. Soc. 2006, 128, 11079.

    35. [35]

      [9] Reindl, S.; Penzkofer, A.; Gong, S.-H.; Landthaler, M.; Szeimies, R. M.; Abels, C.; Bäumler, W. J. Photochem. Photobiol. A 1997, 105, 65.

    36. [36]

      [10] Mosman, T. J. Immunol. Methods 1983, 65, 55.

    37. [37]

      [11] Hsiao, I. L.; Huang, Y. J. J. Nanosci. Nanotechnol. 2011, 11, 5228.

    38. [38]

      [12] (a) Hanein, D.; Geiger, B.; Addadi, L. Science 1994, 263, 1413.

    39. [39]

      (b) Zhang, M.; Qing, G.; Sun, T. Chem. Soc. Rev. 2012, 41, 1972.

    40. [40]

      (c) Gao, G.; Zhang, M.; Lu, P.; Guo, G.; Wang, D.; Sun, T. Angew. Chem., Int. Ed. 2015, 54, 2245.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    18. [18]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(0)
  • Abstract views(596)
  • HTML views(103)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return