Citation: Gao Guanbin, Gong Dejun, Zhang Mingxi, Sun Taolei. Chiral Gold Nanoclusters: A New Near-Infrared Fluorescent Probe[J]. Acta Chimica Sinica, ;2016, 74(4): 363-368. doi: 10.6023/A16010038
-
Near-infrared (NIR) fluorescence facilitates noninvasive bio-imaging because it involves less interference from blood and tissue auto-fluorescence and high transparency. Nowadays, the research of new NIR fluorescent probes with favorable biocompatibility, high quantum yield, high stability and long-wavelength emission band has become the focus of bio-nanotechnology. Herein, we introduced NIBC enantiomers onto the surface of gold nanoclusters and synthesized chiral gold nanoclusters anchored with N-isobutyryl-L-cysteine (L-NIBC-AuNCs) and N-isobutyryl-D-cysteine (D-NIBC-AuNCs), respectively. Transmission electron microscopy (TEM images) of the L-NIBC-AuNCs and D-NIBC-AuNCs reveal that the particle sizes of both two AuNCs are around 1.9±0.7 nm. The UV-Vis absorption spectra of L-NIBC-AuNCs and D-NIBC-AuNCs are basically identical and both two AuNCs have characteristic absorption peaks at 580 nm and 680 nm. Compared with the FT-IR spectra of NIBC, the vanishing of the S—H stretching vibration at the 2500~2600 cm-1 in the FT-IR spectra of L-NIBC-AuNCs and D-NIBC-AuNCs indicate that L-NIBC and D-NIBC have successfully anchored on to the surface of Au core by Au—S bond. The circular dichroism (CD) spectra of L-NIBC-AuNCs and D-NIBC-AuNCs show nearly a mirror image relationship at 230~360 nm, which means the chirality signal transmitted from molecular level to nanoscale level. Most important of all, both two water-soluble nanoclusters have fluorescence emission bands between 900~1000 nm which belong to the near infrared bands. And the fluorescence quantum yields of L-NIBC-AuNCs and D-NIBC-AuNCs are 6.9% and 8.2%, respectively. Cell toxicity experiments show that both two kinds of gold nanoclusters have no cytotoxicity even at the high concentration of 100 mg/L. Moreover, these gold nanoclusters also have unique chiroptical activity and potential chiral recognition ability. Based on the experiment mentioned above, these kinds of chiral gold nanoclusters can be used as a new kind of near-infrared fluorescent probe, which may have promising application in the near-infrared fluorescent imaging. These findings provide an interesting insight in the near-infrared fluorescence (NIRF) imaging techniques.
-
Keywords:
- gold nanoclusters,
- near-infrared,
- fluorescent probe,
- chirality
-
-
[1]
[1] (a) Ralph, W.; Ching-Hsuan, T.; Umar, M.; Alexei, B. Jr. Nat. Biotechnol. 1999, 17, 375.
-
[2]
(b) Weissleder, R.; Pittet, M. J. Nature 2008, 452, 580.
-
[3]
(c) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2012, 42, 622.
-
[4]
(d) Wang, X.; Chang, G.; Cao, R.; Meng, L. Prog. Chem. 2015, 27, 794. (王晓驰, 常刚, 曹瑞军, 孟令杰, 化学进展, 2015, 27, 794. )
-
[5]
(e) Yu, H.; Li, H.; Zhang, X.; Xiao, Y.; Fang, P.; Lv, C.; Hou, W. Acta Chim. Sinica 2015, 73, 450. (于海波, 李红玲, 张新富, 肖义, 方沛菊, 吕春娇, 侯伟, 化学学报, 2015, 73, 450. )
-
[6]
[2] (a) Han, J.; Burgess, K. Chem. Rev. 2010, 110, 2709.
-
[7]
(b) Luo, S.; Zhang, E.; Su, Y.; Cheng, T.; Shi, C. Biomaterials 2011, 32, 7127.
-
[8]
(c) Guo, Z. Q.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2012, 42, 622.
-
[9]
(d) Yuan, A.; Wu, J.; Tang, X.; Zhao, L.; Xu, F.; Hu, Y. J. Pharm. Sci. 2013, 102, 6.
-
[10]
(e) Ni, Y.; Wu, J. Org. Biomol. Chem. 2014, 12, 3774.
-
[11]
[3] (a) Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Ishimura, K. Adv. Funct. Mater. 2012, 22, 3539.
-
[12]
(b) Li, C.; Cao, L.; Zhang, Y.-J.; Yi, P.; Wang, M.; Tan, B.; Deng, Z.; Wu, D.; Wang, Q. Small 2015, 11, 4517.
-
[13]
[4] (a) Hilderbrand, S. A.; Weissleder, R. Curr. Opin. Chem. Biol. 2010, 14, 71.
-
[14]
(b) Gu, Y.-P.; Cui, R.; Zhang, Z.-L.; Xie, Z.-X.; Pang, D.-W. J. Am. Chem. Soc. 2012, 134, 79.
-
[15]
(c) Cui, X.; Lv, Y.; Liu, Y.; Wu, B. Acta Chim. Sinica 2014, 72, 1. (崔晓腾, 吕玉洋, 刘颖, 吴伯岳, 化学学报, 2014, 72, 1.)
-
[16]
[5] (a) Qian, G.; Wang, Z. Y. Chem. Asian J. 2010, 5, 1006.
-
[17]
(b) Shen, S.; Wang, Q. Chem. Mater. 2013, 25, 1166.
-
[18]
(c) Ding, X.; Liow, C.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J. J. Am. Chem. Soc. 2014, 136, 15684.
-
[19]
(d) Li, X.; Zhang, F.; Zhao, D. Chem. Soc. Rev. 2015, 44, 1346.
-
[20]
(e) Yang, W.; Guo, W.; Zhang, B.; Chang, J. Acta Chim. Sinica 2014, 72, 1209. (杨维涛, 郭伟圣, 张兵波, 常津, 化学学报, 2014, 72, 1209.)
-
[21]
[6] (a) Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11600.
-
[22]
(b) Welsher, K.; Liu, Z.; Daranciang, D.; Dai, H. Nano Lett. 2008, 8, 586.
-
[23]
(c) Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. Nat. Nanotechnol. 2009, 4, 773.
-
[24]
(d) Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8943.
-
[25]
(e) Robinson, J. T.; Hong, G.; Liang, Y.; Zhang, B.; Yaghi, O. K.; Dai, H. J. Am. Chem. Soc. 2012, 134, 10664.
-
[26]
(f) Hong, G.; Diao, S.; Chang, J.; Antaris, A. L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I.; Kuo, C. J.; Dai, H. Nat. Photonics 2014, 8, 723.
-
[27]
[7] (a) Du, Y.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. J. Am. Chem. Soc. 2010, 132, 1470.
-
[28]
(b) Zhang, Y.; Hong, G.; Zhang, Y.-J.; Chen, G.; Li, F.; Dai, H.; Wang, Q. ACS Nano 2012, 6, 3695.
-
[29]
(c) Hong, G.; Robinson, J. T.; Zhang, Y.-J.; Diao, S.; Antaris, A. L.; Wang, Q.; Dai, H. Angew. Chem., Int. Ed. 2012, 51, 9956.
-
[30]
(d) Zhang, Y.; Zhang, Y.-J.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biomaterials 2013, 34, 393.
-
[31]
(e) Li, C.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. Biomaterials 2014, 35, 3639.
-
[32]
(f) Li, C.; Li, F.; Zhang, Y.-J.; Zhang, W.; Zhang, X.; Wang, Q. ACS Nano 2015, 9, 12255.
-
[33]
(g) Hu, F.; Li, C.; Zhang, Y.-J.; Wang, M.; Wu, D.; Wang, Q. Nano Res. 2015, 8, 1637.
-
[34]
[8] Cyrille, G.; Thomas, B. J. Am. Chem. Soc. 2006, 128, 11079.
-
[35]
[9] Reindl, S.; Penzkofer, A.; Gong, S.-H.; Landthaler, M.; Szeimies, R. M.; Abels, C.; Bäumler, W. J. Photochem. Photobiol. A 1997, 105, 65.
-
[36]
[10] Mosman, T. J. Immunol. Methods 1983, 65, 55.
-
[37]
[11] Hsiao, I. L.; Huang, Y. J. J. Nanosci. Nanotechnol. 2011, 11, 5228.
-
[38]
[12] (a) Hanein, D.; Geiger, B.; Addadi, L. Science 1994, 263, 1413.
-
[39]
(b) Zhang, M.; Qing, G.; Sun, T. Chem. Soc. Rev. 2012, 41, 1972.
-
[40]
(c) Gao, G.; Zhang, M.; Lu, P.; Guo, G.; Wang, D.; Sun, T. Angew. Chem., Int. Ed. 2015, 54, 2245.
-
[1]
-
-
[1]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[2]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[3]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[4]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[5]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[6]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[7]
Haiying Wang , Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004
-
[8]
Keying Qu , Jie Li , Ziqiu Lai , Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091
-
[9]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[10]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[11]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[12]
Conghao Shi , Ranran Wang , Juli Jiang , Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034
-
[13]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[14]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[15]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[16]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[17]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[18]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[19]
Liwei Wang , Guangran Ma , Li Wang , Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094
-
[20]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(648)
- HTML views(114)