Citation: Gao Yuxi, Hu Jun, Ju Yong. Supramolecular Self-Assembly Based on Natural Small Molecules[J]. Acta Chimica Sinica, ;2016, 74(4): 312-329. doi: 10.6023/A16010016 shu

Supramolecular Self-Assembly Based on Natural Small Molecules

  • Corresponding author: Ju Yong, 
  • Received Date: 8 January 2016

    Fund Project: 项目受国家自然科学基金(No. 21472108) (No. 21472108)国家重大科学研究计划(973计划, No. 2012CB821600) (973计划, No. 2012CB821600)

  • Natural products have been widely used in the construction of supramolecular self-assemblies due to not only their abundant resources, unique chiral structures, and multiple reaction sites, but also the good biocompatibility and the controllable degradability. Through the simple chemical modification natural products-based functional molecules would self-assemble into various supramolecular assemblies primarily promoted by non-covalent interactions, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, and charge-transfer interactions. During the assembly process, their unique molecular chirality would be transferred and magnified into supramolecular assemblies, thus providing a facile method to fabricate helical ribbons, nanotubes, and other chiral nanostructures. Furthermore, their good biocompatibility and biological activity endow the assemblies with the ability to be widely applied in tissue engineering, drug delivery, cell imaging, and so on. In this review, recent developments of supramolecular self-assemblies based on amino acids, sugars, nucleosides, steroids, triterpenoids and other natural products were summarized.
  • 加载中
    1. [1]

      [1] Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.

    2. [2]

      [2] Rybtchinski, B. ACS Nano 2011, 5, 6791.

    3. [3]

      [3] Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382.

    4. [4]

      [4] Zhang, L.; Wang, X.; Wang, T.; Liu, M. Small 2015, 11, 1025.

    5. [5]

      [5] Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821.

    6. [6]

      [6] Díaz, D. D.; Kühbeck, D.; Koopmans, R. J. Chem. Soc. Rev. 2011, 40, 427.

    7. [7]

      [7] Hong, C.; Wang, H. Acta Chim. Sinica 2014, 72, 739. (洪传敏, 王海水, 化学学报, 2014, 72, 739.)

    8. [8]

      [8] Yang, W.; Yu, S.; Chen, S.; Liu, Y.; Shao, Z.; Chen, X. Acta Chim. Sinica 2014, 72, 1164. (杨文华, 俞淑英, 陈胜, 刘也卓, 邵正中, 陈新, 化学学报, 2014, 72, 1164.)

    9. [9]

      [9] Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047. (冉茂双, 施冬键, 董罕星, 陈明清, 赵增亮, 化学学报, 2015, 73, 1047.)

    10. [10]

      [10] Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596.

    11. [11]

      [11] Cui, H.; Webber, M. J.; Stupp, S. I. Peptide Science 2010, 94, 1.

    12. [12]

      [12] Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.

    13. [13]

      [13] Du, X.; Zhou, J.; Xu, B. Chem. Asian J. 2014, 9, 1446.

    14. [14]

      [14] Schnerder, H.-J.; Agrawal, P.; Yatsimirsky, A. K. Chem. Soc. Rev. 2013, 42, 6777.

    15. [15]

      [15] Hosta-Rigau, L.; Zhang, Y.; Teo, B.; Postma, A.; Städler, B. Nanoscale 2013, 5, 89.

    16. [16]

      [16] Lu, J.; Ju, Y. Chin. J. Org. Chem. 2013, 33, 469. (卢金荣, 巨勇, 有机化学, 2013, 33, 469.)

    17. [17]

      [17] Ren, C.; Zhang, J.; Chen, M.; Yang, Z. Chem. Soc. Rev. 2014, 43, 7257.

    18. [18]

      [18] Kuang, Y.; Shi, J.; Li, J.; Yuan, D.; Alberti, K. A.; Xu, Q.; Xu, B. Angew. Chem., Int. Ed. 2014, 53, 8104.

    19. [19]

      [19] Duan, P.; Cao, H.; Zhang, L.; Liu, M. Soft Matter 2014, 10, 5428.

    20. [20]

      [20] Shi, J.; Gao, Y.; Yang, Z.; Xu, B. Beilstein J. Org. Chem. 2011, 7, 167.

    21. [21]

      [21] Yang, Z.; Gu, H.; Fu, D.; Gao, P.; Lam, J. K.; Xu, B. Adv. Mater. 2004, 16, 1440.

    22. [22]

      [22] Nanda, J.; Biswas, A.; Banerjee, A. Soft Matter 2013, 9, 4198.

    23. [23]

      [23] Dubey, M.; Kumar, A.; Pandey, D. S. Chem. Commun. 2014, 50, 1675.

    24. [24]

      [24] Friggeri, A.; Feringa, B. L.; van Esch, J. J. Controlled Release 2004, 97, 241.

    25. [25]

      [25] Haridas, V.; Sahu, S.; Sapala, A. R. Chem. Commun. 2012, 48, 3821.

    26. [26]

      [26] Lv, K.; Qin, L.; Wang, X.; Zhang, L.; Liu, M. Phys. Chem. Chem. Phys. 2013, 15, 20197.

    27. [27]

      [27] Wang, X.; Duan, P.; Liu, M. Chem. Commun. 2012, 48, 7501.

    28. [28]

      [28] Wang, X.; Liu, M. Chem. Eur. J. 2014, 20, 10110.

    29. [29]

      [29] Qin, L.; Duan, P.; Xie, F.; Zhang, L.; Liu, M. Chem. Commun. 2013, 49, 10823.

    30. [30]

      [30] Shen, Z.; Wang, T.; Liu, M. Chem. Commun. 2014, 50, 2096.

    31. [31]

      [31] Shen, Z.; Wang, T.; Liu, M. Langmuir 2014, 30, 10772.

    32. [32]

      [32] Liu, C.; Jin, Q.; Lv, K.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50, 3702.

    33. [33]

      [33] Suzuki, M.; Hanabusa, K. Chem. Soc. Rev. 2009, 38, 967.

    34. [34]

      [34] Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Chem. Eur. J. 2008, 14, 2133.

    35. [35]

      [35] Song, Q.; Geng, H.; Wang, L.; Ye, L.; Zhang, A.; Shao, Z.; Feng, Z. Acta Chim. Sinica 2015, 73, 423. (宋倩颖, 耿慧敏, 王璐, 叶霖, 张爱英, 邵自强, 冯增国, 化学学报, 2015, 73, 423.)

    36. [36]

      [36] Suzuki, M.; Nakajima, Y.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Langmuir 2003, 19, 8622.

    37. [37]

      [37] Reches, M.; Gazit, E. Science 2003, 300, 625.

    38. [38]

      [38] Zhao, J.; Huang, R.; Qi, W.; Wang, Y.; Su, R.; He, Z. Prog. Chem. 2014, 26, 1445. (赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏, 化学进展, 2014, 26, 1445.)

    39. [39]

      [39] Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877.

    40. [40]

      [40] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J. Chem. Mater. 2008, 20, 1522.

    41. [41]

      [41] Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Angew. Chem., Int. Ed. 2007, 46, 2431.

    42. [42]

      [42] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J.; Mu, W.; Wang, B.; Ou-yang, Z. Chem. Eur. J. 2008, 14, 5974.

    43. [43]

      [43] Fleming, S.; Ulijn, R. V. Chem. Soc. Rev. 2014, 43, 8150.

    44. [44]

      [44] Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Adv. Mater. 2006, 18, 611.

    45. [45]

      [45] Tang, C.; Smith, A. M.; Collins, R. F.; Ulijn, R. V.; Saiani, A. Langmuir 2009, 25, 9447.

    46. [46]

      [46] Yang, Z.; Xu, K.; Wang, L.; Gu, H.; Wei, H.; Zhang, M.; Xu, B. Chem. Commun. 2005, 41, 4414.

    47. [47]

      [47] Yang, Z.; Liang, G.; Guo, Z.; Guo, Z.; Xu, B. Angew. Chem., Int. Ed. 2007, 46, 8216.

    48. [48]

      [48] Yang, Z.; Liang, G.; Wang, L.; Xu, B. J. Am. Chem. Soc. 2006, 128, 3038.

    49. [49]

      [49] Zhang, Y.; Kuang, Y.; Gao, Y.; Xu, B. Langmuir 2011, 27, 529.

    50. [50]

      [50] Wang, H.; Yang, Z. Nanoscale 2012, 4, 5259.

    51. [51]

      [51] Gao, J.; Wang, H.; Wang, L.; Wang, J.; Kong, D.; Yang, Z. J. Am. Chem. Soc. 2009, 131, 11286.

    52. [52]

      [52] Wang, H.; Ren, C.; Song, Z.; Wang, L.; Chen. X.; Yang, Z. Nanotechnology 2010, 21, 225606.

    53. [53]

      [53] Shi, Y.; Wang, Z.; Zhang, X.; Xu, T.; Ji, S.; Ding, D.; Yang, Z.; Wang, L. Chem. Commun. 2015, 51, 15265.

    54. [54]

      [54] Ren, C.; Song, Z.; Zheng, W.; Chen, X.; Wang, L.; Kong, D.; Yang, Z. Chem. Commun. 2011, 47, 1619.

    55. [55]

      [55] Birchall, L. S.; Roy, S.; Jayawarna, V.; Hughes, M.; Irvine, E.; Okorogheye, G. T.; Saudi, N.; Santis, E. D.; Tuttle, T.; Edwards, A. A.; Ulijn, R. V. Chem. Sci. 2011, 2, 1349.

    56. [56]

      [56] Chabre, Y. M.; Roy, R. Chem. Soc. Rev. 2013, 42, 4657.

    57. [57]

      [57] Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328.

    58. [58]

      [58] Vidyasagar, A.; Handore, K.; Sureshan, K. M. Angew. Chem., Int. Ed. 2011, 50, 8021.

    59. [59]

      [59] Wang, K. Prog. Chem. 2015, 27, 775. (王克让, 化学进展, 2015, 27, 775.)

    60. [60]

      [60] Ryu, J.-H.; Lee, E.; Lim, Y.-B.; Lee, M. J. Am. Chem. Soc. 2007, 129, 4808.

    61. [61]

      [61] Lee, D.-W.; Kim, T.; Park, I.-S.; Huang, Z.; Lee, M. J. Am. Chem. Soc. 2012, 134, 14722.

    62. [62]

      [62] Lin, Y.; Wang, A.; Qiao, Y.; Gao, C.; Drechsler, M.; Ye, J.; Yan, Y.; Huang, J. Soft Matter 2010, 6, 2031.

    63. [63]

      [63] Kim, B.-S.; Yang, W.-Y.; Ryu, J.-H.; Yoo, Y.-S.; Lee, M. Chem. Commun. 2005, 41, 2035.

    64. [64]

      [64] Kim, B.-S.; Hong, D.-J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127, 16333.

    65. [65]

      [65] Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149.

    66. [66]

      [66] Yang, Y.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25, 6039.

    67. [67]

      [67] Sun, K.; Xiao, C.; Liu, C.; Fu, W.; Wang, Z.; Li, Z. Langmuir 2014, 30, 11040.

    68. [68]

      [68] Huang, Y.; Hu, J.; Kuang, W.; Wei, Z.; Faul, C. F. J. Chem. Commun. 2011, 47, 5554.

    69. [69]

      [69] Wang, K.; An, H.; Wang, Y.; Zhang, J.; Li, X. Org. Biomol. Chem. 2013, 11, 1007.

    70. [70]

      [70] Wang, K.; An, H.; Qian, F.; Wang, Y.; Zhang, J.; Li, X. RSC Adv. 2013, 3, 23190.

    71. [71]

      [71] Wang, K.; Han, D.; Cao, G.; Li, X. Chem. Asian J. 2015, 10, 1204.

    72. [72]

      [72] Wang, K.; An, H.; Wu, L.; Zhang, J.; Li, X. Chem. Commun. 2012, 48, 5644.

    73. [73]

      [73] Clemente, M. J.; Fitremann, J.; Mauzac, M.; Serrano, J. L.; Oriol, L. Langmuir 2011, 27, 15236.

    74. [74]

      [74] Clemente, M. J.; Romero, P.; Serrano, J. L.; Fitremann, J.; Oriol, L. Chem. Mater. 2012, 24, 3847.

    75. [75]

      [75] Skilling, K. J.; Ndungu, A.; Kellam, B.; Ashford, M.; Bradshaw, T. D.; Marlow, M. J. Mater. Chem. B 2014, 2, 8412.

    76. [76]

      [76] Moreau, L.; Barthélémy, P.; Maataoui, M. E.; Grinstaff, M. W. J. Am. Chem. Soc. 2004, 126, 7533.

    77. [77]

      [77] Du, X.; Li, J.; Gao, Y.; Kuang, L.; Xu, B. Chem. Commun. 2012, 48, 2098.

    78. [78]

      [78] Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296.

    79. [79]

      [79] Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815. (邵昱, 李闯, 周旭, 陈平, 杨忠强, 李志波, 刘冬生, 化学学报, 2015, 73, 815.)

    80. [80]

      [80] Lin, C.; Zhai, W.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72, 709. (蔺超, 翟伟, 范楼珍, 李晓宏, 化学学报, 2014, 72, 709.)

    81. [81]

      [81] Adhikari, B.; Shah, A.; Kraatz, H.-B. J. Mater. Chem. B 2014, 2, 4802.

    82. [82]

      [82] Peters, G. M.; Skala, L. P.; Plank, T. N.; Hyman, B. J.; Reddy, G. N. M.; Marsh, A.; Brown, S. P.; Davis, J. T. J. Am. Chem. Soc. 2014, 136, 12596.

    83. [83]

      [83] Wu, J.; Yi, T.; Xia, Q.; Zou, Y.; Liu, F.; Dong, J.; Shu, T.; Li, F.; Huang, C. Chem. Eur. J 2009, 15, 6234.

    84. [84]

      [84] Tu, T.; Fang, W.; Bao, X.; Li, X.; Dötz, K. H. Angew. Chem., Int. Ed. 2011, 50, 6601.

    85. [85]

      [85] Xu, F.; Wang, H.; Zhao, J.; Liu, X.; Li, D.; Chen, C.; Ji, J. Macromolecules 2013, 46, 4235.

    86. [86]

      [86] Lin, Y.-C.; Kachar, B.; Weiss, R. G. J. Am. Chem. Soc. 1989, 111, 5542.

    87. [87]

      [87] Xu, Z.; Peng, J.; Yan, N.; Yu, H.; Zhang, S.; Liu, K.; Fang, Y. Soft Matter 2013, 9, 1091.

    88. [88]

      [88] Yu, X.; Li, Y.; Yin, Y.; Yu, D. Mater. Sci. Eng., C 2012, 32, 1695.

    89. [89]

      [89] Zhou, G.; Li, Y.; Yu, X.; Yu, D.; Yin, Y. Supramol. Chem. 2012, 24, 234.

    90. [90]

      [90] Smith, M. M.; Smith, D. K. Soft Matter 2011, 7, 4856.

    91. [91]

      [91] Xue, M.; Liu, K.; Peng, J.; Zhang, Q.; Fang, Y. J. Colloid Interface Sci. 2008, 327, 94.

    92. [92]

      [92] Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. Langmuir 2008, 24, 2992.

    93. [93]

      [93] Gao, D.; Xue, M.; Peng, J.; Liu, J.; Yan, N.; He, P.; Fang, Y. Tetrahedron 2010, 66, 2961.

    94. [94]

      [94] George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489.

    95. [95]

      [95] Svobodová, H.; Noponen, V.; Kolehmainen, E.; Sievänen, E. RSC Adv. 2012, 2, 4985.

    96. [96]

      [96] Kong, L.; Sun, T.; Zhang, F.; Xin, F.; Hao, A. Prog. Chem. 2012, 24, 790. (孔丽, 孙涛, 张峰, 辛飞飞, 郝爱友, 化学进展, 2012, 24, 790.)

    97. [97]

      [97] Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 6664.

    98. [98]

      [98] Sumiya, S.; Shiraishi, Y.; Hirai, T. New J. Chem. 2013, 37, 2642.

    99. [99]

      [99] Liu, J.; Yan, J.; Yuan, X.; Liu, K.; Peng, J.; Fang, Y. J. Colloid Interface Sci. 2008, 318, 397.

    100. [100]

      [100] He, P.; Liu, J.; Liu, K.; Ding, L.; Yan, J.; Gao, D.; Fang, Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2010, 362, 127.

    101. [101]

      [101] Xing, P.; Chen, H.; Bai, L.; Zhao, Y. Chem. Commun. 2015, 51, 9309.

    102. [102]

      [102] Gao, Y.; Lu, J.; Wu, J.; Hu, J.; Ju, Y. RSC Adv. 2014, 4, 63539.

    103. [103]

      [103] van Herpt, J. T.; Areephong, J.; Stuart, M. C.; Browne, W. R.; Feringa, B. L. Chem. Eur. J. 2014, 20, 1737.

    104. [104]

      [104] Dutta, S.; Kar, T.; Mandal, D.; Das, P. K. Langmuir 2013, 29, 316.

    105. [105]

      [105] Yu, C.; Gao, C.; Lü, S.; Chen, C.; Huang, Y.; Liu, M. Chem. Eng. J. 2013, 228, 290.

    106. [106]

      [106] Mukhopadhyay, S.; Maitra, U. Current Science 2004, 87, 1666.

    107. [107]

      [107] Zhang, H.; Peng, J.; Liu, K.; Fang, Y. Prog. Chem. 2011, 23, 1591. (张荷兰, 彭军霞, 刘凯强, 房喻, 化学进展, 2011, 23, 1591.)

    108. [108]

      [108] Rich, A.; Blow, D. M. Nature 1958, 182, 423.

    109. [109]

      [109] Li, Y.; Holzwarth, J. F.; Bohne, C. Langmuir 2000, 16, 2038.

    110. [110]

      [110] Bohne, C. Langmuir 2006, 22, 9100.

    111. [111]

      [111] Jiang, L.; Wang, K.; Deng, M.; Wang, Y.; Huang, J. Langmuir 2008, 24, 4600.

    112. [112]

      [112] Qiao, Y.; Lin, Y.; Wang, Y.; Yang, Z.; Liu, J.; Zhou, J.; Yan, Y.; Huang, J. Nano Lett. 2009, 9, 4500.

    113. [113]

      [113] Wang, H.; Xu, W.; Song, S.; Feng, L.; Song, A.; Hao, J. J. Phys. Chem. B 2014, 118, 4693.

    114. [114]

      [114] Wang, H.; Song, S.; Hao, J.; Song, A. Chem. Eur. J. 2015, 21, 12194.

    115. [115]

      [115] Travaglini, L.; D’Annibale, A.; Schillén, K.; Olsson, U.; Sennato, S.; Pavel, N. V.; Galantini, L. Chem. Commun. 2012, 48, 12011.

    116. [116]

      [116] Sajisha, V. S.; Maitra, U. RSC Adv. 2014, 4, 43167.

    117. [117]

      [117] Li, Y.; Li, G.; Wang, X.; Li, W.; Su, Z.; Zhang, Y.; Ju, Y. Chem. Eur. J. 2009, 15, 6399.

    118. [118]

      [118] Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. Chem. Commun. 2015, 51, 10210.

    119. [119]

      [119] Ramírez-López, P.; de la Torre, M. C.; Asenjo, M.; Ramírez- Castellanos, J.; González-Calbet, J. M.; Rodríguez-Gimeno, A.; de Arellano, C. R.; Sierra, M. A. Chem. Commun. 2011, 47, 10281.

    120. [120]

      [120] Bag, B. G.; Maity, G. C.; Pramanik, S. R. Supramol. Chem. 2005, 65, 925.

    121. [121]

      [121] Bag, B. G.; Dinda, S. K.; Dey, P. P.; Mallia, V. A.; Weiss, R. G. Langmuir 2009, 25, 8663.

    122. [122]

      [122] Bag, B. G.; Dash, S. S. Nanoscale 2011, 3, 4564.

    123. [123]

      [123] Bag, B. G.; Majumdar, R. RSC Adv. 2012, 2, 8623.

    124. [124]

      [124] Bag, B. G.; Paul, K. Asian J. Org. Chem. 2012, 1, 150.

    125. [125]

      [125] Bag, B. G.; Majumdar, R.; Dinda, S. K.; Dey, P. P.; Maity, G. C.; Mallia, V. A.; Weiss, R. G. Langmuir 2013, 29, 1766.

    126. [126]

      [126] Hu, J.; Zhang, M.; Ju, Y. Soft Matter 2009, 5, 4971.

    127. [127]

      [127] Lu, J.; Hu, J.; Liu, C.; Gao, H.; Ju, Y. Soft Matter 2012, 8, 9576.

    128. [128]

      [128] Lu, J.; Hu, J.; Song, Y.; Ju, Y. Org. Lett. 2011, 13, 3372.

    129. [129]

      [129] Lu, J.; Gao, Y.; Wu, J.; Ju, Y. RSC Adv. 2013, 3, 23548.

    130. [130]

      [130] Lu, J.; Wu, J.; Ju, Y. New J. Chem. 2014, 38, 6050.

    131. [131]

      [131] Wu, J.; Lu, J.; Hu, J.; Gao, Y.; Ma, Q.; Ju, Y. RSC Adv. 2013, 3, 24906.

    132. [132]

      [132] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Nanoscale 2015, 7, 13568.

    133. [133]

      [133] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Langmuir 2016, 32, 1685.

    134. [134]

      [134] Gao, Y.; Li, Y.; Zhao, X.; Hu, J.; Ju, Y. RSC Adv. 2015, 5, 102097.

    135. [135]

      [135] Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R. Angew. Chem., Int. Ed. 2015, 54, 5408.

    136. [136]

      [136] Zhang, Q.; Qu, D.; Ma, X.; Tian, H. Chem. Commun. 2013, 49, 9800.

    137. [137]

      [137] Zhang, Q.; Yao, X.; Qu, D.; Ma, X. Chem. Commun. 2014, 50, 1567.

    138. [138]

      [138] Reddie, K. G.; Humphries, W. H.; Bain, C. P.; Payne, C. K.; Kemp, M. L.; Murthy, N. Org. Lett. 2012, 14, 680.

    139. [139]

      [139] Fan, W.; Li, M.; Hong, C.; Pan, C. Acta Chim. Sinica 2015, 73, 330. (范溦, 李敏, 洪春雁, 潘才元, 化学学报, 2015, 73, 330.)

    140. [140]

      [140] Yu, H.; Mizufune, H.; Uenaka, K.; Moritoki, T.; Koshima, H. Tetrahedron 2005, 61, 8932.

    141. [141]

      [141] Chen, G.; Xue, P.; Lu, R.; Song, D.; Bao, C.; Xu, T.; Zhao, Y. Chem. Res. Chin. Univ. 2009, 25, 178.

    142. [142]

      [142] Ji, W.; Liu, G.; Xu, M.; Dou, X.; Feng, C. Chem. Commun. 2014, 50, 15545.

    143. [143]

      [143] Vemula, P. K.; John, G. Acc. Chem. Res. 2008, 41, 769.

    144. [144]

      [144] John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715.

    145. [145]

      [145] John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5494.

    146. [146]

      [146] Vemula, P. K.; Aslam, U.; Mallia, V. A.; John, G. Chem. Mater. 2007, 19, 138.

    147. [147]

      [147] Nandi, S.; Altenbach, H.; Jakob, B.; Lange, K.; Ihizane, R.; Schneider, M. P. Org. Lett. 2011, 13, 1980.

    148. [148]

      [148] Chakraborty, P.; Roy, B.; Bairi, P.; Nandi, A. K. J. Mater. Chem. 2012, 22, 20291.

    149. [149]

      [149] Xing, P.; Chu, X.; Ma, M.; Li, S.; Hao, A. Phys. Chem. Chem. Phys. 2014, 16, 8346.

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    15. [15]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    16. [16]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    17. [17]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

Metrics
  • PDF Downloads(8)
  • Abstract views(947)
  • HTML views(208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return