Citation: Gao Yuxi, Hu Jun, Ju Yong. Supramolecular Self-Assembly Based on Natural Small Molecules[J]. Acta Chimica Sinica, ;2016, 74(4): 312-329. doi: 10.6023/A16010016 shu

Supramolecular Self-Assembly Based on Natural Small Molecules

  • Corresponding author: Ju Yong, 
  • Received Date: 8 January 2016

    Fund Project: 项目受国家自然科学基金(No. 21472108) (No. 21472108)国家重大科学研究计划(973计划, No. 2012CB821600) (973计划, No. 2012CB821600)

  • Natural products have been widely used in the construction of supramolecular self-assemblies due to not only their abundant resources, unique chiral structures, and multiple reaction sites, but also the good biocompatibility and the controllable degradability. Through the simple chemical modification natural products-based functional molecules would self-assemble into various supramolecular assemblies primarily promoted by non-covalent interactions, such as hydrogen bonding, π-π stacking, van der Waals forces, electrostatic interactions, and charge-transfer interactions. During the assembly process, their unique molecular chirality would be transferred and magnified into supramolecular assemblies, thus providing a facile method to fabricate helical ribbons, nanotubes, and other chiral nanostructures. Furthermore, their good biocompatibility and biological activity endow the assemblies with the ability to be widely applied in tissue engineering, drug delivery, cell imaging, and so on. In this review, recent developments of supramolecular self-assemblies based on amino acids, sugars, nucleosides, steroids, triterpenoids and other natural products were summarized.
  • 加载中
    1. [1]

      [1] Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.

    2. [2]

      [2] Rybtchinski, B. ACS Nano 2011, 5, 6791.

    3. [3]

      [3] Prins, L. J.; Reinhoudt, D. N.; Timmerman, P. Angew. Chem., Int. Ed. 2001, 40, 2382.

    4. [4]

      [4] Zhang, L.; Wang, X.; Wang, T.; Liu, M. Small 2015, 11, 1025.

    5. [5]

      [5] Sangeetha, N. M.; Maitra, U. Chem. Soc. Rev. 2005, 34, 821.

    6. [6]

      [6] Díaz, D. D.; Kühbeck, D.; Koopmans, R. J. Chem. Soc. Rev. 2011, 40, 427.

    7. [7]

      [7] Hong, C.; Wang, H. Acta Chim. Sinica 2014, 72, 739. (洪传敏, 王海水, 化学学报, 2014, 72, 739.)

    8. [8]

      [8] Yang, W.; Yu, S.; Chen, S.; Liu, Y.; Shao, Z.; Chen, X. Acta Chim. Sinica 2014, 72, 1164. (杨文华, 俞淑英, 陈胜, 刘也卓, 邵正中, 陈新, 化学学报, 2014, 72, 1164.)

    9. [9]

      [9] Ran, M.; Shi, D.; Dong, H.; Chen, M.; Zhao, Z. Acta Chim. Sinica 2015, 73, 1047. (冉茂双, 施冬键, 董罕星, 陈明清, 赵增亮, 化学学报, 2015, 73, 1047.)

    10. [10]

      [10] Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596.

    11. [11]

      [11] Cui, H.; Webber, M. J.; Stupp, S. I. Peptide Science 2010, 94, 1.

    12. [12]

      [12] Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853.

    13. [13]

      [13] Du, X.; Zhou, J.; Xu, B. Chem. Asian J. 2014, 9, 1446.

    14. [14]

      [14] Schnerder, H.-J.; Agrawal, P.; Yatsimirsky, A. K. Chem. Soc. Rev. 2013, 42, 6777.

    15. [15]

      [15] Hosta-Rigau, L.; Zhang, Y.; Teo, B.; Postma, A.; Städler, B. Nanoscale 2013, 5, 89.

    16. [16]

      [16] Lu, J.; Ju, Y. Chin. J. Org. Chem. 2013, 33, 469. (卢金荣, 巨勇, 有机化学, 2013, 33, 469.)

    17. [17]

      [17] Ren, C.; Zhang, J.; Chen, M.; Yang, Z. Chem. Soc. Rev. 2014, 43, 7257.

    18. [18]

      [18] Kuang, Y.; Shi, J.; Li, J.; Yuan, D.; Alberti, K. A.; Xu, Q.; Xu, B. Angew. Chem., Int. Ed. 2014, 53, 8104.

    19. [19]

      [19] Duan, P.; Cao, H.; Zhang, L.; Liu, M. Soft Matter 2014, 10, 5428.

    20. [20]

      [20] Shi, J.; Gao, Y.; Yang, Z.; Xu, B. Beilstein J. Org. Chem. 2011, 7, 167.

    21. [21]

      [21] Yang, Z.; Gu, H.; Fu, D.; Gao, P.; Lam, J. K.; Xu, B. Adv. Mater. 2004, 16, 1440.

    22. [22]

      [22] Nanda, J.; Biswas, A.; Banerjee, A. Soft Matter 2013, 9, 4198.

    23. [23]

      [23] Dubey, M.; Kumar, A.; Pandey, D. S. Chem. Commun. 2014, 50, 1675.

    24. [24]

      [24] Friggeri, A.; Feringa, B. L.; van Esch, J. J. Controlled Release 2004, 97, 241.

    25. [25]

      [25] Haridas, V.; Sahu, S.; Sapala, A. R. Chem. Commun. 2012, 48, 3821.

    26. [26]

      [26] Lv, K.; Qin, L.; Wang, X.; Zhang, L.; Liu, M. Phys. Chem. Chem. Phys. 2013, 15, 20197.

    27. [27]

      [27] Wang, X.; Duan, P.; Liu, M. Chem. Commun. 2012, 48, 7501.

    28. [28]

      [28] Wang, X.; Liu, M. Chem. Eur. J. 2014, 20, 10110.

    29. [29]

      [29] Qin, L.; Duan, P.; Xie, F.; Zhang, L.; Liu, M. Chem. Commun. 2013, 49, 10823.

    30. [30]

      [30] Shen, Z.; Wang, T.; Liu, M. Chem. Commun. 2014, 50, 2096.

    31. [31]

      [31] Shen, Z.; Wang, T.; Liu, M. Langmuir 2014, 30, 10772.

    32. [32]

      [32] Liu, C.; Jin, Q.; Lv, K.; Zhang, L.; Liu, M. Chem. Commun. 2014, 50, 3702.

    33. [33]

      [33] Suzuki, M.; Hanabusa, K. Chem. Soc. Rev. 2009, 38, 967.

    34. [34]

      [34] Suzuki, M.; Yumoto, M.; Shirai, H.; Hanabusa, K. Chem. Eur. J. 2008, 14, 2133.

    35. [35]

      [35] Song, Q.; Geng, H.; Wang, L.; Ye, L.; Zhang, A.; Shao, Z.; Feng, Z. Acta Chim. Sinica 2015, 73, 423. (宋倩颖, 耿慧敏, 王璐, 叶霖, 张爱英, 邵自强, 冯增国, 化学学报, 2015, 73, 423.)

    36. [36]

      [36] Suzuki, M.; Nakajima, Y.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K. Langmuir 2003, 19, 8622.

    37. [37]

      [37] Reches, M.; Gazit, E. Science 2003, 300, 625.

    38. [38]

      [38] Zhao, J.; Huang, R.; Qi, W.; Wang, Y.; Su, R.; He, Z. Prog. Chem. 2014, 26, 1445. (赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏, 化学进展, 2014, 26, 1445.)

    39. [39]

      [39] Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877.

    40. [40]

      [40] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J. Chem. Mater. 2008, 20, 1522.

    41. [41]

      [41] Yan, X.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J. Angew. Chem., Int. Ed. 2007, 46, 2431.

    42. [42]

      [42] Yan, X.; Cui, Y.; He, Q.; Wang, K.; Li, J.; Mu, W.; Wang, B.; Ou-yang, Z. Chem. Eur. J. 2008, 14, 5974.

    43. [43]

      [43] Fleming, S.; Ulijn, R. V. Chem. Soc. Rev. 2014, 43, 8150.

    44. [44]

      [44] Jayawarna, V.; Ali, M.; Jowitt, T. A.; Miller, A. F.; Saiani, A.; Gough, J. E.; Ulijn, R. V. Adv. Mater. 2006, 18, 611.

    45. [45]

      [45] Tang, C.; Smith, A. M.; Collins, R. F.; Ulijn, R. V.; Saiani, A. Langmuir 2009, 25, 9447.

    46. [46]

      [46] Yang, Z.; Xu, K.; Wang, L.; Gu, H.; Wei, H.; Zhang, M.; Xu, B. Chem. Commun. 2005, 41, 4414.

    47. [47]

      [47] Yang, Z.; Liang, G.; Guo, Z.; Guo, Z.; Xu, B. Angew. Chem., Int. Ed. 2007, 46, 8216.

    48. [48]

      [48] Yang, Z.; Liang, G.; Wang, L.; Xu, B. J. Am. Chem. Soc. 2006, 128, 3038.

    49. [49]

      [49] Zhang, Y.; Kuang, Y.; Gao, Y.; Xu, B. Langmuir 2011, 27, 529.

    50. [50]

      [50] Wang, H.; Yang, Z. Nanoscale 2012, 4, 5259.

    51. [51]

      [51] Gao, J.; Wang, H.; Wang, L.; Wang, J.; Kong, D.; Yang, Z. J. Am. Chem. Soc. 2009, 131, 11286.

    52. [52]

      [52] Wang, H.; Ren, C.; Song, Z.; Wang, L.; Chen. X.; Yang, Z. Nanotechnology 2010, 21, 225606.

    53. [53]

      [53] Shi, Y.; Wang, Z.; Zhang, X.; Xu, T.; Ji, S.; Ding, D.; Yang, Z.; Wang, L. Chem. Commun. 2015, 51, 15265.

    54. [54]

      [54] Ren, C.; Song, Z.; Zheng, W.; Chen, X.; Wang, L.; Kong, D.; Yang, Z. Chem. Commun. 2011, 47, 1619.

    55. [55]

      [55] Birchall, L. S.; Roy, S.; Jayawarna, V.; Hughes, M.; Irvine, E.; Okorogheye, G. T.; Saudi, N.; Santis, E. D.; Tuttle, T.; Edwards, A. A.; Ulijn, R. V. Chem. Sci. 2011, 2, 1349.

    56. [56]

      [56] Chabre, Y. M.; Roy, R. Chem. Soc. Rev. 2013, 42, 4657.

    57. [57]

      [57] Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328.

    58. [58]

      [58] Vidyasagar, A.; Handore, K.; Sureshan, K. M. Angew. Chem., Int. Ed. 2011, 50, 8021.

    59. [59]

      [59] Wang, K. Prog. Chem. 2015, 27, 775. (王克让, 化学进展, 2015, 27, 775.)

    60. [60]

      [60] Ryu, J.-H.; Lee, E.; Lim, Y.-B.; Lee, M. J. Am. Chem. Soc. 2007, 129, 4808.

    61. [61]

      [61] Lee, D.-W.; Kim, T.; Park, I.-S.; Huang, Z.; Lee, M. J. Am. Chem. Soc. 2012, 134, 14722.

    62. [62]

      [62] Lin, Y.; Wang, A.; Qiao, Y.; Gao, C.; Drechsler, M.; Ye, J.; Yan, Y.; Huang, J. Soft Matter 2010, 6, 2031.

    63. [63]

      [63] Kim, B.-S.; Yang, W.-Y.; Ryu, J.-H.; Yoo, Y.-S.; Lee, M. Chem. Commun. 2005, 41, 2035.

    64. [64]

      [64] Kim, B.-S.; Hong, D.-J.; Bae, J.; Lee, M. J. Am. Chem. Soc. 2005, 127, 16333.

    65. [65]

      [65] Hu, J.; Kuang, W.; Deng, K.; Zou, W.; Huang, Y.; Wei, Z.; Faul, C. F. J. Adv. Funct. Mater. 2012, 22, 4149.

    66. [66]

      [66] Yang, Y.; Zhang, Y.; Wei, Z. Adv. Mater. 2013, 25, 6039.

    67. [67]

      [67] Sun, K.; Xiao, C.; Liu, C.; Fu, W.; Wang, Z.; Li, Z. Langmuir 2014, 30, 11040.

    68. [68]

      [68] Huang, Y.; Hu, J.; Kuang, W.; Wei, Z.; Faul, C. F. J. Chem. Commun. 2011, 47, 5554.

    69. [69]

      [69] Wang, K.; An, H.; Wang, Y.; Zhang, J.; Li, X. Org. Biomol. Chem. 2013, 11, 1007.

    70. [70]

      [70] Wang, K.; An, H.; Qian, F.; Wang, Y.; Zhang, J.; Li, X. RSC Adv. 2013, 3, 23190.

    71. [71]

      [71] Wang, K.; Han, D.; Cao, G.; Li, X. Chem. Asian J. 2015, 10, 1204.

    72. [72]

      [72] Wang, K.; An, H.; Wu, L.; Zhang, J.; Li, X. Chem. Commun. 2012, 48, 5644.

    73. [73]

      [73] Clemente, M. J.; Fitremann, J.; Mauzac, M.; Serrano, J. L.; Oriol, L. Langmuir 2011, 27, 15236.

    74. [74]

      [74] Clemente, M. J.; Romero, P.; Serrano, J. L.; Fitremann, J.; Oriol, L. Chem. Mater. 2012, 24, 3847.

    75. [75]

      [75] Skilling, K. J.; Ndungu, A.; Kellam, B.; Ashford, M.; Bradshaw, T. D.; Marlow, M. J. Mater. Chem. B 2014, 2, 8412.

    76. [76]

      [76] Moreau, L.; Barthélémy, P.; Maataoui, M. E.; Grinstaff, M. W. J. Am. Chem. Soc. 2004, 126, 7533.

    77. [77]

      [77] Du, X.; Li, J.; Gao, Y.; Kuang, L.; Xu, B. Chem. Commun. 2012, 48, 2098.

    78. [78]

      [78] Davis, J. T.; Spada, G. P. Chem. Soc. Rev. 2007, 36, 296.

    79. [79]

      [79] Shao, Y.; Li, C.; Zhou, X.; Chen, P.; Yang, Z.; Li, Z.; Liu, D. Acta Chim. Sinica 2015, 73, 815. (邵昱, 李闯, 周旭, 陈平, 杨忠强, 李志波, 刘冬生, 化学学报, 2015, 73, 815.)

    80. [80]

      [80] Lin, C.; Zhai, W.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72, 709. (蔺超, 翟伟, 范楼珍, 李晓宏, 化学学报, 2014, 72, 709.)

    81. [81]

      [81] Adhikari, B.; Shah, A.; Kraatz, H.-B. J. Mater. Chem. B 2014, 2, 4802.

    82. [82]

      [82] Peters, G. M.; Skala, L. P.; Plank, T. N.; Hyman, B. J.; Reddy, G. N. M.; Marsh, A.; Brown, S. P.; Davis, J. T. J. Am. Chem. Soc. 2014, 136, 12596.

    83. [83]

      [83] Wu, J.; Yi, T.; Xia, Q.; Zou, Y.; Liu, F.; Dong, J.; Shu, T.; Li, F.; Huang, C. Chem. Eur. J 2009, 15, 6234.

    84. [84]

      [84] Tu, T.; Fang, W.; Bao, X.; Li, X.; Dötz, K. H. Angew. Chem., Int. Ed. 2011, 50, 6601.

    85. [85]

      [85] Xu, F.; Wang, H.; Zhao, J.; Liu, X.; Li, D.; Chen, C.; Ji, J. Macromolecules 2013, 46, 4235.

    86. [86]

      [86] Lin, Y.-C.; Kachar, B.; Weiss, R. G. J. Am. Chem. Soc. 1989, 111, 5542.

    87. [87]

      [87] Xu, Z.; Peng, J.; Yan, N.; Yu, H.; Zhang, S.; Liu, K.; Fang, Y. Soft Matter 2013, 9, 1091.

    88. [88]

      [88] Yu, X.; Li, Y.; Yin, Y.; Yu, D. Mater. Sci. Eng., C 2012, 32, 1695.

    89. [89]

      [89] Zhou, G.; Li, Y.; Yu, X.; Yu, D.; Yin, Y. Supramol. Chem. 2012, 24, 234.

    90. [90]

      [90] Smith, M. M.; Smith, D. K. Soft Matter 2011, 7, 4856.

    91. [91]

      [91] Xue, M.; Liu, K.; Peng, J.; Zhang, Q.; Fang, Y. J. Colloid Interface Sci. 2008, 327, 94.

    92. [92]

      [92] Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y. Langmuir 2008, 24, 2992.

    93. [93]

      [93] Gao, D.; Xue, M.; Peng, J.; Liu, J.; Yan, N.; He, P.; Fang, Y. Tetrahedron 2010, 66, 2961.

    94. [94]

      [94] George, M.; Weiss, R. G. Acc. Chem. Res. 2006, 39, 489.

    95. [95]

      [95] Svobodová, H.; Noponen, V.; Kolehmainen, E.; Sievänen, E. RSC Adv. 2012, 2, 4985.

    96. [96]

      [96] Kong, L.; Sun, T.; Zhang, F.; Xin, F.; Hao, A. Prog. Chem. 2012, 24, 790. (孔丽, 孙涛, 张峰, 辛飞飞, 郝爱友, 化学进展, 2012, 24, 790.)

    97. [97]

      [97] Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S. J. Am. Chem. Soc. 1994, 116, 6664.

    98. [98]

      [98] Sumiya, S.; Shiraishi, Y.; Hirai, T. New J. Chem. 2013, 37, 2642.

    99. [99]

      [99] Liu, J.; Yan, J.; Yuan, X.; Liu, K.; Peng, J.; Fang, Y. J. Colloid Interface Sci. 2008, 318, 397.

    100. [100]

      [100] He, P.; Liu, J.; Liu, K.; Ding, L.; Yan, J.; Gao, D.; Fang, Y. Colloids and Surfaces A: Physicochem. Eng. Aspects 2010, 362, 127.

    101. [101]

      [101] Xing, P.; Chen, H.; Bai, L.; Zhao, Y. Chem. Commun. 2015, 51, 9309.

    102. [102]

      [102] Gao, Y.; Lu, J.; Wu, J.; Hu, J.; Ju, Y. RSC Adv. 2014, 4, 63539.

    103. [103]

      [103] van Herpt, J. T.; Areephong, J.; Stuart, M. C.; Browne, W. R.; Feringa, B. L. Chem. Eur. J. 2014, 20, 1737.

    104. [104]

      [104] Dutta, S.; Kar, T.; Mandal, D.; Das, P. K. Langmuir 2013, 29, 316.

    105. [105]

      [105] Yu, C.; Gao, C.; Lü, S.; Chen, C.; Huang, Y.; Liu, M. Chem. Eng. J. 2013, 228, 290.

    106. [106]

      [106] Mukhopadhyay, S.; Maitra, U. Current Science 2004, 87, 1666.

    107. [107]

      [107] Zhang, H.; Peng, J.; Liu, K.; Fang, Y. Prog. Chem. 2011, 23, 1591. (张荷兰, 彭军霞, 刘凯强, 房喻, 化学进展, 2011, 23, 1591.)

    108. [108]

      [108] Rich, A.; Blow, D. M. Nature 1958, 182, 423.

    109. [109]

      [109] Li, Y.; Holzwarth, J. F.; Bohne, C. Langmuir 2000, 16, 2038.

    110. [110]

      [110] Bohne, C. Langmuir 2006, 22, 9100.

    111. [111]

      [111] Jiang, L.; Wang, K.; Deng, M.; Wang, Y.; Huang, J. Langmuir 2008, 24, 4600.

    112. [112]

      [112] Qiao, Y.; Lin, Y.; Wang, Y.; Yang, Z.; Liu, J.; Zhou, J.; Yan, Y.; Huang, J. Nano Lett. 2009, 9, 4500.

    113. [113]

      [113] Wang, H.; Xu, W.; Song, S.; Feng, L.; Song, A.; Hao, J. J. Phys. Chem. B 2014, 118, 4693.

    114. [114]

      [114] Wang, H.; Song, S.; Hao, J.; Song, A. Chem. Eur. J. 2015, 21, 12194.

    115. [115]

      [115] Travaglini, L.; D’Annibale, A.; Schillén, K.; Olsson, U.; Sennato, S.; Pavel, N. V.; Galantini, L. Chem. Commun. 2012, 48, 12011.

    116. [116]

      [116] Sajisha, V. S.; Maitra, U. RSC Adv. 2014, 4, 43167.

    117. [117]

      [117] Li, Y.; Li, G.; Wang, X.; Li, W.; Su, Z.; Zhang, Y.; Ju, Y. Chem. Eur. J. 2009, 15, 6399.

    118. [118]

      [118] Zhang, M.; Yin, X.; Tian, T.; Liang, Y.; Li, W.; Lan, Y.; Li, J.; Zhou, M.; Ju, Y.; Li, G. Chem. Commun. 2015, 51, 10210.

    119. [119]

      [119] Ramírez-López, P.; de la Torre, M. C.; Asenjo, M.; Ramírez- Castellanos, J.; González-Calbet, J. M.; Rodríguez-Gimeno, A.; de Arellano, C. R.; Sierra, M. A. Chem. Commun. 2011, 47, 10281.

    120. [120]

      [120] Bag, B. G.; Maity, G. C.; Pramanik, S. R. Supramol. Chem. 2005, 65, 925.

    121. [121]

      [121] Bag, B. G.; Dinda, S. K.; Dey, P. P.; Mallia, V. A.; Weiss, R. G. Langmuir 2009, 25, 8663.

    122. [122]

      [122] Bag, B. G.; Dash, S. S. Nanoscale 2011, 3, 4564.

    123. [123]

      [123] Bag, B. G.; Majumdar, R. RSC Adv. 2012, 2, 8623.

    124. [124]

      [124] Bag, B. G.; Paul, K. Asian J. Org. Chem. 2012, 1, 150.

    125. [125]

      [125] Bag, B. G.; Majumdar, R.; Dinda, S. K.; Dey, P. P.; Maity, G. C.; Mallia, V. A.; Weiss, R. G. Langmuir 2013, 29, 1766.

    126. [126]

      [126] Hu, J.; Zhang, M.; Ju, Y. Soft Matter 2009, 5, 4971.

    127. [127]

      [127] Lu, J.; Hu, J.; Liu, C.; Gao, H.; Ju, Y. Soft Matter 2012, 8, 9576.

    128. [128]

      [128] Lu, J.; Hu, J.; Song, Y.; Ju, Y. Org. Lett. 2011, 13, 3372.

    129. [129]

      [129] Lu, J.; Gao, Y.; Wu, J.; Ju, Y. RSC Adv. 2013, 3, 23548.

    130. [130]

      [130] Lu, J.; Wu, J.; Ju, Y. New J. Chem. 2014, 38, 6050.

    131. [131]

      [131] Wu, J.; Lu, J.; Hu, J.; Gao, Y.; Ma, Q.; Ju, Y. RSC Adv. 2013, 3, 24906.

    132. [132]

      [132] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Nanoscale 2015, 7, 13568.

    133. [133]

      [133] Gao, Y.; Hao, J.; Wu, J.; Zhang, X.; Hu, J.; Ju, Y. Langmuir 2016, 32, 1685.

    134. [134]

      [134] Gao, Y.; Li, Y.; Zhao, X.; Hu, J.; Ju, Y. RSC Adv. 2015, 5, 102097.

    135. [135]

      [135] Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R. Angew. Chem., Int. Ed. 2015, 54, 5408.

    136. [136]

      [136] Zhang, Q.; Qu, D.; Ma, X.; Tian, H. Chem. Commun. 2013, 49, 9800.

    137. [137]

      [137] Zhang, Q.; Yao, X.; Qu, D.; Ma, X. Chem. Commun. 2014, 50, 1567.

    138. [138]

      [138] Reddie, K. G.; Humphries, W. H.; Bain, C. P.; Payne, C. K.; Kemp, M. L.; Murthy, N. Org. Lett. 2012, 14, 680.

    139. [139]

      [139] Fan, W.; Li, M.; Hong, C.; Pan, C. Acta Chim. Sinica 2015, 73, 330. (范溦, 李敏, 洪春雁, 潘才元, 化学学报, 2015, 73, 330.)

    140. [140]

      [140] Yu, H.; Mizufune, H.; Uenaka, K.; Moritoki, T.; Koshima, H. Tetrahedron 2005, 61, 8932.

    141. [141]

      [141] Chen, G.; Xue, P.; Lu, R.; Song, D.; Bao, C.; Xu, T.; Zhao, Y. Chem. Res. Chin. Univ. 2009, 25, 178.

    142. [142]

      [142] Ji, W.; Liu, G.; Xu, M.; Dou, X.; Feng, C. Chem. Commun. 2014, 50, 15545.

    143. [143]

      [143] Vemula, P. K.; John, G. Acc. Chem. Res. 2008, 41, 769.

    144. [144]

      [144] John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715.

    145. [145]

      [145] John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5494.

    146. [146]

      [146] Vemula, P. K.; Aslam, U.; Mallia, V. A.; John, G. Chem. Mater. 2007, 19, 138.

    147. [147]

      [147] Nandi, S.; Altenbach, H.; Jakob, B.; Lange, K.; Ihizane, R.; Schneider, M. P. Org. Lett. 2011, 13, 1980.

    148. [148]

      [148] Chakraborty, P.; Roy, B.; Bairi, P.; Nandi, A. K. J. Mater. Chem. 2012, 22, 20291.

    149. [149]

      [149] Xing, P.; Chu, X.; Ma, M.; Li, S.; Hao, A. Phys. Chem. Chem. Phys. 2014, 16, 8346.

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(8)
  • Abstract views(734)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return