Citation: Wang Yujue, Hu Min, Wang Yu, Qin Yanhong, Chen Hongyang, Zeng Limin, Lei Jianrong, Huang Xiaofeng, He Lingyan, Zhang Ruiqin, Wu Zhijun. Characterization and Influence Factors of PM2.5 Emitted from Crop Straw Burning[J]. Acta Chimica Sinica, ;2016, 74(4): 356-362. doi: 10.6023/A16010008 shu

Characterization and Influence Factors of PM2.5 Emitted from Crop Straw Burning

  • Corresponding author: Hu Min, 
  • Received Date: 5 January 2016

    Fund Project: 项目受环保部公益性行业科研专项(No. 201409010) (No. 201409010)国家自然科学基金重大项目(Nos. 91544214, 21190052) (Nos. 91544214, 21190052)中国科学院战略性先导科技专项(No. XDB05010500)资助. (No. XDB05010500)

  • Large quantities of particulate pollutants are emitted into the atmosphere during biomass burning processes. In China, large amounts of agricultural residues are burned in the field during harvest seasons, which influence regional air quality and human health. Corn and wheat are two major crops grown in China, whose burning was simulated in this study. The controlled laboratory simulation of straw burning was performed in the Laboratory of Biomass Burning Simulation at Peking University Shenzhen Graduate School. The burning simulation system was improved and verified. Straw burning aerosols (PM2.5) samples were collected and measured by gravimetric method. Organic carbon (OC) and elemental carbon (EC) were measured by thermal/optical method. Water-soluble inorganic ions and organic matter were measured by ion chromatography. Emission level, characterization and influence factors of crop straw burning aerosols are discussed. PM2.5 emission factors of corn and wheat straw burning are 1082.8 and 835.7~897.3 mg/kg, respectively. Organic matter (OM), which is calculated by multiplying organic carbon (OC) by 1.3, is the major component of PM2.5, accounting for 42%~66% of the total mass. Nearly half (37%~50%) of OM are water soluble. Cl- and K+are two major components among water-soluble inorganic ions, accounting for 4%~15% and 2%~14% of total particle mass, respectively. The K+/EC ratio is 0.5~3.8. The proportions of these species in PM2.5 are comparable to previous studies. Straw moisture content and burning temperature influence the emission level and characterization of straw burning aerosols. Emission factors of PM2.5 and OC increase with the increase of straw moisture content because of incomplete burning. With higher moisture content, more thermal energy is used for the evaporation of water, lowering the burning temperature. Then less proportion of K+and Cl- are released from biomass into the smoke. Therefore, their contributions to the particle mass decrease with the increase of straw moisture content. The emissions of PM2.5 and OC/EC by crop straw burning in the field are estimated based on the emission factors obtained in this study. Corn and wheat burning in the field yield 92.7 Gg PM2.5 and 47.5 Gg OC every year in China, accounting for important fractions among the total mass.
  • 加载中
    1. [1]

      [1] Simoneit, B. R. T. Appl. Geochem. 2002, 17, 129.

    2. [2]

      [2] Anderson, B. E.; Grant, W. B.; Gregory, G. L.; Browell, E. V.; Collins, J. E.; Sachse, G. W.; Bagwell, D. R.; Hudgins, C. H.; Blake, D. R.; Blake, N. J. J. Geophys. Res. 1996, 101, 24117.

    3. [3]

      [3] Cheng, Y.; Engling, G.; He, K. B.; Duan, F. K.; Ma, Y. L.; Du, Z. Y.; Liu, J. M.; Zheng, M.; Weber, R. J. Atmos. Chem. Phys. 2013, 13, 7765.

    4. [4]

      [4] Khan, A. A.; de Jong, W.; Jansens, P. J.; Spliethoff, H. Fuel Process. Technol. 2009, 90, 21.

    5. [5]

      [5] Radzi bin Abas, M.; Oros, D. R.; Simoneit, B. R. Chemosphere 2004, 55, 1089.

    6. [6]

      [6] Andreae, M. O.; Merlet, P. Global Biogeochem. Cycles 2001, 15, 955.

    7. [7]

      [7] Iinuma, Y.; Brüggemann, E.; Gnauk, T.; Müller, K.; Andreae, M. O.; Helas, G.; Parmar, R.; Herrmann, H. J. Geophys. Res. 2007, 112.

    8. [8]

      [8] Streets, D. G.; Yarber, K. F.; Woo, J. H.; Carmichael, G. R. Global Biogeochem. Cycles 2003, 17, 1099.

    9. [9]

      [9] Cao, G. L.; Zhang, X. Y.; Zheng, F. C. Atmos. Environ. 2006, 40, 6516.

    10. [10]

      [10] Yan, X. Y.; Ohara, T.; Akimoto, H. Atmos. Environ. 2006, 40, 5262.

    11. [11]

      [11] Li, X.; Wang, S.; Duan, L.; Hao, J.; Li, C.; Chen, Y.; Yang, L. Environ. Sci. Technol. 2007, 41, 6052.

    12. [12]

      [12] Hays, M. D.; Fine, P. M.; Geron, C. D.; Kleeman, M. J.; Gullett, B. K. Atmos. Environ. 2005, 39, 6747.

    13. [13]

      [13] Turn, S. Q.; Jenkins, B. M.; Chow, J. C.; Pritchett, L. C.; Campbell, D.; Cahill, T.; Whalen, S. A. J. Geophys. Res.-Atmos. 1997, 102, 3683.

    14. [14]

      [14] Li, J. F.; Song, Y.; Mao, Y.; Mao, Z. C.; Wu, Y. S.; Li, M. M.; Huang, X.; He, Q. C.; Hu, M. Atmos. Environ. 2014, 92, 442.

    15. [15]

      [15] Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M. Atmos. Environ. 2014, 98, 25.

    16. [16]

      [16] Shen, G.; Xue, M.; Wei, S.; Chen, Y.; Wang, B.; Wang, R.; Shen, H.; Li, W.; Zhang, Y.; Huang, Y.; Chen, H.; Wei, W.; Zhao, Q.; Li, B.; Wu, H.; Tao, S. J. Environ. Sci. 2013, 25, 511.

    17. [17]

      [17] Lu, H.; Zhu, L.; Zhu, N. Atmos. Environ. 2009, 43, 978.

    18. [18]

      [18] Ortiz de Zárate, I.; Ezcurra, A.; Lacaux, J. P.; Van Dinh, P. Atmos. Environ. 2000, 34, 3183.

    19. [19]

      [19] Nguyen, B. C.; Putaud, J. P.; Mihalopoulos, N.; Bonsang, B.; Doan, C. Environ. Monit. Assess. 1994, 31, 131.

    20. [20]

      [20] Levin, E. J. T.; McMeeking, G. R.; Carrico, C. M.; Mack, L. E.; Kreidenweis, S. M.; Wold, C. E.; Moosmüller, H.; Arnott, W. P.; Hao, W. M.; Collett, J. L.; Malm, W. C. J. Geophys. Res. 2010, 115.

    21. [21]

      [21] Dhammapala, R.; Claiborn, C.; Corkill, J.; Gullett, B. Atmos. Environ. 2006, 40, 1007.

    22. [22]

      [22] Guo, S.; Hu, M.; Guo, Q.; Shang, D. Acta Chim. Sinica 2014, 72, 658. (郭松, 胡敏, 郭庆丰, 尚冬杰, 化学学报, 2014, 72, 658.)

    23. [23]

      [23] Bae, M.-S.; Park, S.-S. Asian J. Atmos. Environ. 2013, 7, 95.

    24. [24]

      [24] Chen, L. W. A.; Verburg, P.; Shackelford, A.; Zhu, D.; Susfalk, R.; Chow, J. C.; Watson, J. G. Atmos. Chem. Phys. 2010, 10, 6617.

    25. [25]

      [25] Bjorkman, E.; Stromberg, B. Energy Fuels 1997, 11, 1026.

    26. [26]

      [26] Jensen, P. A.; Frandsen, F. J.; Dam-Johansen, K.; Sander, B. Energy Fuels 2000, 14, 1280.

    27. [27]

      [27] Knudsen, J. N.; Jensen, P. A.; Dam-Johansen, K. Energy Fuels 2004, 18, 1385.

    28. [28]

      [28] He, L. Y.; Lin, Y.; Huang, X. F.; Guo, S.; Xue, L.; Su, Q.; Hu, M.; Luan, S. J.; Zhang, Y. H. Atmos. Chem. Phys. 2010, 10, 11535.

    29. [29]

      [29] Guo, S.; Hu, M.; Wang, Z. B.; Slanina, J.; Zhao, Y. L. Atmos. Chem. Phys. 2010, 10, 947.

    30. [30]

      [30] Huan, N.; Zeng, L. M.; Shao, M.; Cui, L.; Mao, J. T.; Zhou, N.; Dong, H. B.; Yu, Z. Y.; Luo, Z. M. Acta Sci. Nat. Univ. Pekinensis 2006, 42, 265 (in Chinese). (郇宁, 曾立民, 邵敏, 崔良, 毛节泰, 周楠, 董华斌, 俞仲英, 罗志明, 北京大学学报(自然科学版), 2006, 42, 265.)

    31. [31]

      [31] Koopmans, A.; Koppejan, J. Regional Consultation on Modern Applications of Biomass Energy 1997, 6.

    32. [32]

      [32] Hao, W. M.; Liu, M. H. Global Biogeochem. Cycles 1994, 8, 495.

  • 加载中
    1. [1]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    2. [2]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    5. [5]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    6. [6]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    13. [13]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    14. [14]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(0)
  • Abstract views(813)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return