Citation: Xia Zhiqing, Shao Andong, Li Qiang, Zhu Shiqin, Zhu Weihong. Substituent Effect on Quinoline-Malononitrile AIE Fluorescent Properties[J]. Acta Chimica Sinica, ;2016, 74(4): 351-355. doi: 10.6023/A16010001 shu

Substituent Effect on Quinoline-Malononitrile AIE Fluorescent Properties

  • Corresponding author: Zhu Weihong, 
  • Received Date: 3 January 2016

    Fund Project: 项目受国家自然科学基金(No. 21325625, 21476076)资助. (No. 21325625, 21476076)

  • As well-known, traditional luminescent dyes such as dicyanomethylene-4H-pyran (DCM) luminogens used in biological diagnosis and therapy still exit several limitations due to their inherent molecular structures. One of the most notorious phenomena is "aggregation caused quenching" (ACQ), namely that the fluorescence can be easily observed in dilute solution, but quenched in high concentration or aggregated state. Therefore, how to understand the aggregation environment formed by dye molecules and further utilize the aggregate itself as a potential pattern for biomedical application is highly desirable. Since the intriguing discovery of the aggregation-induced emission (AIE) phenomenon, much effort has been paid to exploration of AIE systems and their applications. These AIE chromophores exhibit highly bright fluorescence when aggregated, and weak fluorescence when dissolved in solution, making them beneficial for improving the sensitivity of biosensors and bioimaging in situ or in vivo. Herein we set out to construct a novel AIE-active quinoline-malononitrile (QM) building block, by merely replacing the oxygen atom in DCM moiety with N-ethyl group, thoroughly solving the fluorescence quenching problems of DCM derivatives in aggregation. Five QM derivatives (QM-H, QM-F, QM-Br, QM-I and QM-N) with different substituent groups have been successfully synthesized by Knoevenagel reaction, extending the AIE wavelength from 528 to 614 nm in the aggregated state. A series of experiments were performed to examine the photoluminescence properties of QM-H, QM-F, QM-Br, QM-I and QM-N. As expected, all these AIE-active compounds show weak or no fluorescence in molecular state when dissolved in THF solution, but enhanced emission in solid or aggregate state along with an increasing volume fraction of water in tetrahydrofuran/water (THF/H2O) mixtures. Moreover, their AIE-active fluorescent properties are dependent upon the different aggregated microenvironment affected by substituent groups of QM derivatives. Notably, the halogen atoms of QM-F, QM-Br and QM-I play important role in AIE quantum yield, while introducing electron donor group shifts the solid fluorescence of QM-N into red emission. The substituent effect of QM derivatives with excellent AIE properties can provide a platform to develop NIR AIE materials.
  • 加载中
    1. [1]

      [1] Guo, Z. Q.; Zhu, W. H.; Tian, H. Chem. Commun. 2012, 48, 6073.

    2. [2]

      [2] Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.

    3. [3]

      [3] (a) Chen, C. H. Chem. Mater. 2004, 16, 4389.

    4. [4]

      (b) Zhong, H. L.; Lai, H.; Fang, Q. J. Phys. Chem. C 2011, 115, 2423.

    5. [5]

      [4] Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Cheng, L.; Chen, H. Y.; Qiu, C. F.; Kwok, H. S.; Zhan, X. W.; Liu, Y. Q.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 18, 1740.

    6. [6]

      [5] (a) Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2015, 44, 4228.

    7. [7]

      (b) Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam J. W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.

    8. [8]

      (c) Guo, Z. Q.; Shao, A. D.; Zhu, W. H. J. Mater. Chem. C 2016, DOI: 10. 1039/C5TC03369A.

    9. [9]

      [6] (a) Zhang, X. Q.; Zhang, X. Y.; Yang, B.; Zhang, Y. L.; Wei, Y. ACS Appl. Mater. Interfaces 2014, 6, 3600.

    10. [10]

      (b) Wang, S.; Zhu, Z.; Wei, D. Q.; Yang, C. L. J. Mater. Chem. C 2015, 3, 11902.

    11. [11]

      [7] Yao, L.; Zhang, S. T.; Wang, R.; Li, W. J.; Shen, F. Z.; Yang, B.; Ma, Y. G. Angew. Chem., Int. Ed. 2014, 53, 2119.

    12. [12]

      [8] (a) Hu, F.; Huang, Y. Y.; Zhang, G. X.; Zhao, R.; Yang, H.; Zhang, D. Q. Anal. Chem. 2014, 86, 7987.

    13. [13]

      (b) Xun, Z. Q.; Tang, H. Y.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Zhang, X. H.; Li, Y. Acta Chim. Sinica 2015, 73, 819. (寻知庆, 唐海云, 曾毅, 陈金平, 于天君, 张小辉, 李嫕, 化学学报, 2015, 73, 819.)

    14. [14]

      (c) Li, Y. D.; Zhang, H.; Wang, X. C.; Wang, F.; Xia, Y. J. Acta Chim., Sinica 2015, 73, 1055. (李昱达, 张恒, 王迅昶, 汪锋, 夏养君, 化学学报, 2015, 73, 1055.)

    15. [15]

      [9] Lu, H. G.; Zheng, Y. D.; Zhao, X. W.; Wang, L. J.; Ma, S. Q.; Han, X. Q.; Xu, B.; Tian, W. J.; Gao, H. Angew. Chem. Int. Ed. 2016, 55, 155.

    16. [16]

      [10] Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S. W.; Xu, J. R. Chem. Soc. Rev. 2012, 41, 3878.

    17. [17]

      [11] Huang, J.; Jiang, Y. B.; Yang, J.; Tang, R. L.; Xie, N.; Li, Q. Q.; Kwok, H. S.; Tang, B. Z.; Li, Z. J. Mater. Chem. C 2014, 2, 2028.

    18. [18]

      [12] Zhang, Y. P.; Li, D. D.; Li, Y.; Yu, J. H. Chem. Sci. 2014, 5, 2710.

    19. [19]

      [13] (a) Zhang, S.; Qin, A. J.; Sun, J. Z.; Tang, B. Z. Prog. Chem. 2011, 23, 623. (张双, 秦安军, 孙景志, 唐本忠, 化学进展, 2011, 23, 623.)

    20. [20]

      (b) Zhao, G. S.; Shi, C. X.; Guo, Z. Q.; Zhu, W. H.; Zhu, S. Q. Chin. J. Org. Chem. 2012, 32, 1620. (赵国生, 史川兴, 郭志前, 朱为宏, 朱世琴, 有机化学, 2012, 32, 1620.)

    21. [21]

      (c) Liu, P.; Chen, D. D.; Feng, X.; Shi, J. B.; Tong, B.; Dong, Y. P. Imag. Sci. Photochem. 2015, 33, 441 (in Chinese). (刘派, 陈笛笛, 冯霄, 石建兵, 佟斌, 董宇平, 影像科学与光化学, 2015, 33, 441.)

    22. [22]

      (d) Yu, H. B.; Li, H. L.; Zhang, X. F.; Xiao, Y.; Fang, P. J.; Lü, C. J.; Hou, W. Acta Chim. Sinica 2015, 73, 450. (于海波, 李红玲, 张新富, 肖义, 方沛菊, 吕春娇, 侯伟, 化学学报, 2015, 73, 450.)

    23. [23]

      [14] Shi, C. X.; Guo, Z. Q.; Yan, Y. L.; Zhu, S. Q.; Xie, Y. S.; Zhao, Y. S.; Zhu, W. H.; Tian, H. ACS Appl. Mater. Interfaces 2012, 5, 192.

    24. [24]

      [15] Shao, A. D.; Guo, Z. Q.; Zhu, S. J.; Zhu, S. Q.; Shi, P.; Tian, H.; Zhu, W. H. Chem. Sci. 2014, 5, 1383.

    25. [25]

      [16] Shao, A. D.; Xie, Y. S.; Zhu, S. J.; Guo, Z. Q.; Zhu, S. Q.; Guo, J.; James, T. D.; Tian, H.; Zhu, W. H. Angew. Chem., Int. Ed. 2015, 54, 7275.

    26. [26]

      [17] Yuan, W. Z.; Yu, Z.; Lu, P.; Deng, C.; Lam, J. W. Y.; Wang, Z.; Chen, E.; Ma, Y.; Tang, B. Z. J. Mater. Chem. 2012, 22, 3323.

    27. [27]

      [18] Shen, X. Y.; Wang, Y. J.; Zhao, E. G.; Yuan, W. Z.; Liu, Y.; Lu, P.; Qin, A. J.; Ma, Y. G.; Sun, J. Z.; Tang, B. Z. J. Phys. Chem. C 2013, 117, 7334.

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    4. [4]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(579)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return