Citation: Zhao Wenjing, Qiao Zengying, Duan Zhongyu, Wang Hao. Synthesis and Self-assembly of pH and ROS Dual Responsive Poly(β-thioester)s[J]. Acta Chimica Sinica, ;2016, 74(3): 234-240. doi: 10.6023/A15120787 shu

Synthesis and Self-assembly of pH and ROS Dual Responsive Poly(β-thioester)s

  • Corresponding author: Duan Zhongyu, zyduan@hebut.edu.cn Wang Hao, wanghao@nanoctr.cn
  • Received Date: 19 December 2015

    Fund Project: the National Natural Science Foundation of China 21374026, 51373046, 51473045Hebei Provincial Natural Science Foundation B2014202209

Figures(14)

  • The Michael addition reaction, which is a mild reaction between activated olefins and nucleophiles, has been widely used in synthesis of tailored macromolecular architectures. We designed a copolymer nanoparticle to obtain the ROS and pH dual responsive capability. We synthesized the amphiphilic poly(β-thioester)s copolymers (D-D-P) composed of di(ethylene glycol) diacrylate (DEDA), DL-dithiothreitol (DTT), acryloyl chloride (AC) and hydrophilic PEG-SH with average Mn=2000 g·mol-1 via Michael addition reaction. The reactions are facile and controllable, and the structures of acquired copolymers are well characterized. The structures of the polymers were confirmed by 1H NMR, and the number molecular weight and distribution of the copolymer D-D-P was measured by GPC (Mn=50400). D-D-P could self-assemble into nanoparticles with core-shell structures by dialysis method due to the composition of hydrophilic side chains and hydrophobic polymer backbones. After the preparation of ROS and pH dual responsive D-D-P nanoparticles in phosphate buffer solution, the morphology and size of D-D-P nanoparticles were observed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) showed that the number size distribution of nanoparticles was around 280 nm. Nile Red (NR) is a unique neutral hydrophobic molecule, which shows very weak fluorescence in aqueous solution and can emit strong fluorescence in the hydrophobic environment. NR absorption and emission spectra are strongly dependent on environment polarity, which make it as a probe molecule that is widely used in the evaluation of microenvironment polarity. The disassembly behaviors of D-D-P nanoparticles were investigated by the change of the nanoparticle size and NR fluorescence spectra. The diameter of nanoparticle decreased under pH 5 and ROS environment conditions, and the NR fluorescence also became weak under pH 5 and ROS environment conditions, which could be attributed to the gradual dissociation of nanoparticles, proving the ROS and pH dual responsive properties of the poly(β-thioester)s. The release behaviors of the DOX encapsulated D-D-P nanoparticles in acidic and oxidative condition were studied by the UV absorption and were further proved in MCF-7 cells.
  • 加载中
    1. [1]

      Deng, C.; Jiang, Y.; Cheng, R.; Meng, F.; Zhong, Z. Nano Today 2012, 7, 467.

    2. [2]

      Davis, M. E.; Chen, Z. G.; Shin, D. M. Nat. Rev. Drug Discov. 2008, 7, 771. 

    3. [3]

      Zhu, C.; Jung, S.; Luo, S.; Meng, F.; Zhu, X.; Park, T. G.; Zhong, Z. Biomaterials 2010, 31, 2408. 

    4. [4]

      Stuart, M. A.; Huck, W. T.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9, 101.

    5. [5]

      Wang, L.; Li, L. L.; Ma, H. L.; Wang, H. Chin. Chem. Lett. 2013, 24, 351.

    6. [6]

      Zhang, D.; Zhao, Y.-X.; Gao, Y.-J.; Gao, F.-P.; Fan, Y.-S.; Li, X.-J.; Duan, Z.-Y.; Wang, H. J. Mater. Chem. B 2013, 1, 5100. 

    7. [7]

      Xiao, C.; Ding, J.; Ma, L.; Yang, C.; Zhuang, X.; Chen, X. Polym. Chem. 2015, 6, 738.

    8. [8]

      Gupta, M. K.; Martin, J. R.; Werfel, T. A.; Shen, T.; Page, J. M.; Duvall, C. L. J. Am. Chem. Soc. 2014, 136, 14896. 

    9. [9]

      Carroll, V.; Michel, B. W.; Blecha, J.; VanBrocklin, H.; Keshari, K.; Wilson, D.; Chang, C. J. J. Am. Chem. Soc. 2014, 136, 14742. 

    10. [10]

      Fang, R. C.; Xu, H. P.; Cao, W.; Yang, L. L.; Zhang, X. Polym. Chem. 2015, 6, 2817.

    11. [11]

      Gerweck, L. E.; Seetharaman, K. Cancer Res. 1996, 56, 1194.

    12. [12]

      Tannock, I. F.; Rotin, D. Cancer Res. 1989, 49, 4373.

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

      Qiao, Z. Y.; Zhang, D.; Hou, C. Y.; Zhao, S. M.; Liu, Y.; Gao, Y. J.; Tan, N. H.; Wang, H. J. Mater. Chem. B 2015, 3, 4514. 

    17. [17]

      Qiao, Z. Y.; Hou, C. Y.; Zhao, W. J.; Zhang, D.; Yang, P. P.; Wang, L.; Wang, H. Chem. Commun. 2015, 51, 12609.

    18. [18]

      Qiao, Z. Y.; Hou, C. Y.; Zhang, D.; Liu, Y.; Lin, Y. X.; An, H. W.; Li, X. J.; Wang, H. J. Mater. Chem. B 2015, 3, 2943. 

    19. [19]

      Zaquen, N.; Wenn, B.; Ranieri, K.; Vandenbergh, J.; Junkers, T. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 178. 

    20. [20]

      Vandenbergh, J.; Ranieri, K.; Junkers, T. Macromol. Chem. Phys. 2012, 213, 2611.

    21. [21]

      Song, C.-C.; Du, F.-S.; Li, Z.-C. J. Mater. Chem. B 2014, 2, 3413.

    22. [22]

      Lallana, E.; Tirelli, N. Macromol. Chem. Phys. 2013, 214, 143.

    23. [23]

      Dan, K.; Ghosh, S. Angew. Chem. Int. Ed. 2013, 52, 7300. 

    24. [24]

      Wu, H.; Zhu, L.; Torchilin, V. P. Biomaterials 2013, 34, 1213. 

    25. [25]

      Zhao, C. W.; He, P.; Xiao, C. S.; Gao, X. Y.; Zhuang, X. L.; Chen, X. S. J. Appl. Polym. Sci. 2012, 123, 2923. 

    26. [26]

      Yang, S. N.; Zhu, F. Y.; Wang, Q.; Liang, F. X.; Qu, X. Z.; Gan, Z. H.; Yang, Z. Z. J. Mater. Chem. B 2015, 3, 4043. 

    27. [27]

      Xiao, D.; Jia, H. Z.; Zhang, J.; Liu, C. W.; Zhuo, R. X.; Zhang, X. Z. Small 2014, 10, 591. 

    28. [28]

      Ji, X.; Chen, J.; Chi, X.; Huang, F. ACS Macro Lett. 2014, 3, 110.

    29. [29]

      Sackett, D. L.; Wolff, J. Anal. Biochem. 1987, 167, 228.

    30. [30]

      Liu, G. H.; Wang, X. R.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. J. Am. Chem. Soc. 2014, 136, 7492. 

    31. [31]

      Liu, G. H.; Zhang, G. F.; Hu, J. M.; Wang, X. R.; Zhu, M. Q.; Liu, S. Y. J. Am. Chem. Soc. 2015, 137, 11645. 

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    3. [3]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    4. [4]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    5. [5]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    6. [6]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    7. [7]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(0)
  • Abstract views(1215)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return