Citation: Zhao Wenjing, Qiao Zengying, Duan Zhongyu, Wang Hao. Synthesis and Self-assembly of pH and ROS Dual Responsive Poly(β-thioester)s[J]. Acta Chimica Sinica, ;2016, 74(3): 234-240. doi: 10.6023/A15120787 shu

Synthesis and Self-assembly of pH and ROS Dual Responsive Poly(β-thioester)s

  • Corresponding author: Duan Zhongyu, zyduan@hebut.edu.cn Wang Hao, wanghao@nanoctr.cn
  • Received Date: 19 December 2015

    Fund Project: the National Natural Science Foundation of China 21374026, 51373046, 51473045Hebei Provincial Natural Science Foundation B2014202209

Figures(14)

  • The Michael addition reaction, which is a mild reaction between activated olefins and nucleophiles, has been widely used in synthesis of tailored macromolecular architectures. We designed a copolymer nanoparticle to obtain the ROS and pH dual responsive capability. We synthesized the amphiphilic poly(β-thioester)s copolymers (D-D-P) composed of di(ethylene glycol) diacrylate (DEDA), DL-dithiothreitol (DTT), acryloyl chloride (AC) and hydrophilic PEG-SH with average Mn=2000 g·mol-1 via Michael addition reaction. The reactions are facile and controllable, and the structures of acquired copolymers are well characterized. The structures of the polymers were confirmed by 1H NMR, and the number molecular weight and distribution of the copolymer D-D-P was measured by GPC (Mn=50400). D-D-P could self-assemble into nanoparticles with core-shell structures by dialysis method due to the composition of hydrophilic side chains and hydrophobic polymer backbones. After the preparation of ROS and pH dual responsive D-D-P nanoparticles in phosphate buffer solution, the morphology and size of D-D-P nanoparticles were observed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) showed that the number size distribution of nanoparticles was around 280 nm. Nile Red (NR) is a unique neutral hydrophobic molecule, which shows very weak fluorescence in aqueous solution and can emit strong fluorescence in the hydrophobic environment. NR absorption and emission spectra are strongly dependent on environment polarity, which make it as a probe molecule that is widely used in the evaluation of microenvironment polarity. The disassembly behaviors of D-D-P nanoparticles were investigated by the change of the nanoparticle size and NR fluorescence spectra. The diameter of nanoparticle decreased under pH 5 and ROS environment conditions, and the NR fluorescence also became weak under pH 5 and ROS environment conditions, which could be attributed to the gradual dissociation of nanoparticles, proving the ROS and pH dual responsive properties of the poly(β-thioester)s. The release behaviors of the DOX encapsulated D-D-P nanoparticles in acidic and oxidative condition were studied by the UV absorption and were further proved in MCF-7 cells.
  • 加载中
    1. [1]

      Deng, C.; Jiang, Y.; Cheng, R.; Meng, F.; Zhong, Z. Nano Today 2012, 7, 467.

    2. [2]

      Davis, M. E.; Chen, Z. G.; Shin, D. M. Nat. Rev. Drug Discov. 2008, 7, 771. 

    3. [3]

      Zhu, C.; Jung, S.; Luo, S.; Meng, F.; Zhu, X.; Park, T. G.; Zhong, Z. Biomaterials 2010, 31, 2408. 

    4. [4]

      Stuart, M. A.; Huck, W. T.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9, 101.

    5. [5]

      Wang, L.; Li, L. L.; Ma, H. L.; Wang, H. Chin. Chem. Lett. 2013, 24, 351.

    6. [6]

      Zhang, D.; Zhao, Y.-X.; Gao, Y.-J.; Gao, F.-P.; Fan, Y.-S.; Li, X.-J.; Duan, Z.-Y.; Wang, H. J. Mater. Chem. B 2013, 1, 5100. 

    7. [7]

      Xiao, C.; Ding, J.; Ma, L.; Yang, C.; Zhuang, X.; Chen, X. Polym. Chem. 2015, 6, 738.

    8. [8]

      Gupta, M. K.; Martin, J. R.; Werfel, T. A.; Shen, T.; Page, J. M.; Duvall, C. L. J. Am. Chem. Soc. 2014, 136, 14896. 

    9. [9]

      Carroll, V.; Michel, B. W.; Blecha, J.; VanBrocklin, H.; Keshari, K.; Wilson, D.; Chang, C. J. J. Am. Chem. Soc. 2014, 136, 14742. 

    10. [10]

      Fang, R. C.; Xu, H. P.; Cao, W.; Yang, L. L.; Zhang, X. Polym. Chem. 2015, 6, 2817.

    11. [11]

      Gerweck, L. E.; Seetharaman, K. Cancer Res. 1996, 56, 1194.

    12. [12]

      Tannock, I. F.; Rotin, D. Cancer Res. 1989, 49, 4373.

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

      Qiao, Z. Y.; Zhang, D.; Hou, C. Y.; Zhao, S. M.; Liu, Y.; Gao, Y. J.; Tan, N. H.; Wang, H. J. Mater. Chem. B 2015, 3, 4514. 

    17. [17]

      Qiao, Z. Y.; Hou, C. Y.; Zhao, W. J.; Zhang, D.; Yang, P. P.; Wang, L.; Wang, H. Chem. Commun. 2015, 51, 12609.

    18. [18]

      Qiao, Z. Y.; Hou, C. Y.; Zhang, D.; Liu, Y.; Lin, Y. X.; An, H. W.; Li, X. J.; Wang, H. J. Mater. Chem. B 2015, 3, 2943. 

    19. [19]

      Zaquen, N.; Wenn, B.; Ranieri, K.; Vandenbergh, J.; Junkers, T. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 178. 

    20. [20]

      Vandenbergh, J.; Ranieri, K.; Junkers, T. Macromol. Chem. Phys. 2012, 213, 2611.

    21. [21]

      Song, C.-C.; Du, F.-S.; Li, Z.-C. J. Mater. Chem. B 2014, 2, 3413.

    22. [22]

      Lallana, E.; Tirelli, N. Macromol. Chem. Phys. 2013, 214, 143.

    23. [23]

      Dan, K.; Ghosh, S. Angew. Chem. Int. Ed. 2013, 52, 7300. 

    24. [24]

      Wu, H.; Zhu, L.; Torchilin, V. P. Biomaterials 2013, 34, 1213. 

    25. [25]

      Zhao, C. W.; He, P.; Xiao, C. S.; Gao, X. Y.; Zhuang, X. L.; Chen, X. S. J. Appl. Polym. Sci. 2012, 123, 2923. 

    26. [26]

      Yang, S. N.; Zhu, F. Y.; Wang, Q.; Liang, F. X.; Qu, X. Z.; Gan, Z. H.; Yang, Z. Z. J. Mater. Chem. B 2015, 3, 4043. 

    27. [27]

      Xiao, D.; Jia, H. Z.; Zhang, J.; Liu, C. W.; Zhuo, R. X.; Zhang, X. Z. Small 2014, 10, 591. 

    28. [28]

      Ji, X.; Chen, J.; Chi, X.; Huang, F. ACS Macro Lett. 2014, 3, 110.

    29. [29]

      Sackett, D. L.; Wolff, J. Anal. Biochem. 1987, 167, 228.

    30. [30]

      Liu, G. H.; Wang, X. R.; Hu, J. M.; Zhang, G. Y.; Liu, S. Y. J. Am. Chem. Soc. 2014, 136, 7492. 

    31. [31]

      Liu, G. H.; Zhang, G. F.; Hu, J. M.; Wang, X. R.; Zhu, M. Q.; Liu, S. Y. J. Am. Chem. Soc. 2015, 137, 11645. 

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    13. [13]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    14. [14]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    15. [15]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    16. [16]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    20. [20]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

Metrics
  • PDF Downloads(0)
  • Abstract views(1361)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return