Citation: Chen Meihua, Pan Zheng, Yin Yuefeng, Liu Jie, Liu Mengyuan, Jia Zijun, Liang Guijie. Panchromatic and High-efficient Energy Transfer Assembly Based on Type I Core-shell Quantum Dots[J]. Acta Chimica Sinica, ;2016, 74(4): 330-334. doi: 10.6023/A15120785 shu

Panchromatic and High-efficient Energy Transfer Assembly Based on Type I Core-shell Quantum Dots

  • Corresponding author: Liang Guijie, 
  • Received Date: 17 December 2015

    Fund Project: 项目受国家自然科学基金(No. 51502085) (No. 51502085)湖北省自然科学基金(No. 2013CFB064)资助. (No. 2013CFB064)

  • In order to overcome the low energy transfer efficiency of the conventional FRET (Förster resonance energy transfer) system, a novel spectra-matching and distance-controllable CIS@ZnS-SQ FRET assembly has been prepared via ultrasonic self-assembly method, by using the synthesized visible CIS@ZnS type I core-shell quantum dots as energy donor and the near infrared SQ dyes as acceptor. Through controllable synthesis of quantum dots, the absorption and fluorescence performance of FRET system were adjusted by the size of CIS@ZnS, while the distance of energy donor-acceptor and the non-valid charge recombination in the FRET system were controlled by the wide-band shell of quantum dots. The excitons transfer and recombination kinetics in CIS@ZnS-SQ assembly were investigated by the pump-probe femtosecond ultrafast transient absorption measurements, with which results in the FRET-type energy transfer mechanism: CIS*+SQ→CIS+SQ* has been proven and a high energy transfer rate of about 5.0×1010 s-1 has been gained between CIS@ZnS and SQ. The excitons' lifetime and FRET energy transfer efficiency were calculated from the fluorescence decay kinetic curves tested by time-resolved fluorescence measurements. The results show that the energy transfer in CIS@ZnS-SQ depends on the size of CIS@ZnS quantum dots. As the size of CIS@ZnS (mainly refers to the ZnS shell thickness) increases from 2.1±0.4 nm to 2.9±0.4 nm, 4.1±0.3 nm, 5.4±0.5 nm and 7.2±0.5 nm, the fluorescence quantum yield of CIS@ZnS improves from 5.4% to 26%, 33%, 38% and 43.3% as well as the distance between CIS@ZnS and SQ (energy donor and acceptor) increases gradually, which makes the FRET energy transfer efficiency (ηFRET) first rise and then decline. As a result, an optimal ηFRET value of 62.8% was gained in the FRET assembly when the reaction time of ZnS shell was 20 min. This research will have a promising theoretical and practical value for the development of the panchromatic and high-efficiency solar cells.
  • 加载中
    1. [1]

      [1] O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.

    2. [2]

      [2] Grätzel, M. Nature 2001, 414, 338.

    3. [3]

      [3] Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 1203.

    4. [4]

      [4] Huang, X. W.; Deng, J. Y.; Xu, L.; Shen, P.; Zhao, B.; Tan, S. T. Acta Chim. Sinica 2012, 70, 1604. (黄先威, 邓继勇, 许律, 沈平, 赵斌, 谭松庭, 化学学报, 2012, 70, 1604.)

    5. [5]

      [5] Kou, D. X.; Liu, W. Q.; Hu, L. H.; Chen, S. H.; Huang, Y.; Dai, S. Y. Acta Chim. Sinica 2013, 71, 1149. (寇东星, 刘伟庆, 胡林华, 陈双宏, 黄阳, 戴松元, 化学学报, 2013, 71, 1149.)

    6. [6]

      [6] Dualeh, A.; Moehl, T.; Nazeeruddin, M. K.; Grätzel, M. ACS Nano 2013, 7, 2292.

    7. [7]

      [7] Rong, Y. G.; Mei, A. Y.; Liu, L. F.; Li, X.; Han, H. W. Acta Chim. Sinica 2015, 73, 237. (荣耀光, 梅安意, 刘林峰, 李雄, 韩宏伟, 化学学报, 2015, 73, 237.)

    8. [8]

      [8] Ma, Y. Z.; Zheng, L. L.; Zhang, L. P.; Chen, Z. J.; Wang, S. F.; Qu, B.; Xiao, L. X.; Gong, Q. H. Acta Chim. Sinica 2015, 73, 257. (马英壮, 郑灵灵, 张立培, 陈志坚, 王树峰, 曲波, 肖立新, 龚旗煌, 化学学报, 2015, 73, 257.)

    9. [9]

      [9] Ye, M.; Chen, C.; Zhang, N.; Wen, X.; Guo, W.; Lin, C. Adv. Energy Mater. 2014, 4, 1079.

    10. [10]

      [10] Zhang, Y.; Yao, Z. B.; Lin, S. W.; Li, J. B.; Lin, H. Acta Chim. Sinica 2015, 73, 219. (张烨, 姚志博, 林仕伟, 李建保, 林红. 化学学报, 2015, 73, 219.)

    11. [11]

      [11] Koeppe, R.; Bossart, O.; Calzaferri, G.; Sariciftci, N. S. Sol. Energy Mater. Sol. C 2007, 91, 986.

    12. [12]

      [12] Yum, J. H.; Hardin, B. E.; Moon, S. J.; Etienne, B.; Frank, N.; Mcgehee, M. D.; Grätzel, M.; Nazeeruddin, M. K. Angew. Chem. Int. Ed. 2009, 48, 9277.

    13. [13]

      [13] Shankar, K.; Feng, X. J.; Grimes, C. A. ACS Nano 2009, 3, 788.

    14. [14]

      [14] Hardin, B. E.; Hoke, E. T.; Armstrong, P. B.; Yum, J. H.; Comte, P.; Torres, T.; Fréchet, J. M. J.; Nazeeruddin, M. K.; Grätzel, M.; McGehee, M. D. Nat. Photonics 2009, 3, 406.

    15. [15]

      [15] Lee, E.; Kim, C.; Jang, P. J. Chem.-Eur. J. 2013, 19, 10280.

    16. [16]

      [16] Andrés, R.; Christian, S. D.; Vito, S.; Guldi, D. M. Adv. Mater. 2011, 23, 4573.

    17. [17]

      [17] Adhyaksa, G. W. P.; Lee, G. I.; Baek, S. W.; Lee, J. Y.; Kang, J. K. Sci. Rep. 2013, 3, 454.

    18. [18]

      [18] Choi, H.; Santra, P. K.; Kamat, P. V. ACS Nano 2012, 6, 5718.

    19. [19]

      [19] Boulesbaa, A.; Huang, Z. Q.; Wu, D.; Lian, T. J. Phys. Chem. C 2010, 114, 962.

    20. [20]

      [20] Liang, L.; Anshu, P.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. J. Am. Chem. Soc. 2011, 133, 1176.

    21. [21]

      [21] Förster, T. Ann. Phys. 1948, 6, 55.

    22. [22]

      [22] Wu, K. F.; Liang, G. J.; Kong, D. G.; Chen, J. Q.; Chen, Z. Y.; Shan, X.; Mcbride, J. R.; Lian, T. Chem. Sci. 2016, 7, 1238.

    23. [23]

      [23] Wu, K. F.; Zhu, H. M.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. J. Am. Chem. Soc. 2012, 134, 10337.

    24. [24]

      [24] Yang, Y.; Liu, Z.; Lian, T. Nano Lett. 2013, 13, 3678.

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    7. [7]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    8. [8]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    11. [11]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    12. [12]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    13. [13]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    16. [16]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(483)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return