Citation: Zhang Yiwe, Ma Xuelu, Zhang Xin, Lei Ming. Theoretical Study on N-N Activation by Thiolate-bridged Dinuclear Dinitrogen Transition-metal Complexes[J]. Acta Chimica Sinica, ;2016, 74(4): 340-350. doi: 10.6023/A15120781 shu

Theoretical Study on N-N Activation by Thiolate-bridged Dinuclear Dinitrogen Transition-metal Complexes

  • Corresponding author: Zhang Xin,  Lei Ming, 
  • Received Date: 16 December 2015

    Fund Project: 项目受国家自然科学基金(No. 21373023) (No. 21373023)北京化工大学学科建设项目基金(No. XK1527)资助项目以及"NSFC-广东联合基金(第二期)超级计算科学应用研究专项资助和国家超级计算广州中心支持"资助. (No. XK1527)资助项目以及"NSFC-广东联合基金(第二期)

  • 90 kinds of dinitrogen binuclear transition-metal complexes at singlet and triplet states in Group 4~10 from Period 4 to 6 based on the biomimetic dinitrogen fixation species were studied using DFT method, [Cp*Fe(μ-η22-bdt)- (μ-η11-MeN=NMe)FeCp*] and [Cp*Fe(μ-SEt)2(μ-η11-MeN=NMe)FeCp*], in order to investigate the transition-metal effect in N-N activation. The calculated results indicate that N-N bond activation is strongly related to the period of transition metal. N-N activation by transition metals in Period 6 is stronger than those in Period 5 and Period 4. For transition metals in the same period, N-N activation ability decreases from Group 4 to Group 10. The odd-even electron number of transition metal center also shows certain influence on the N-N activation. In addition, side-on coordination mode is more favorable than end-on mode for thiolate-bridged dinuclear transition-metal complexes on N-N bond activation. The type of ligands (BDT ligand or ethyl ligand) in this system has little impact on N-N activation.
  • 加载中
    1. [1]

      [1] Tanabe, Y.; Nishibayashi, Y. Coord. Chem. Rev. 2013, 257, 2551.

    2. [2]

      [2] Ma, X. L.; Lei, M. Prog. Chem. 2013, 25, 1325. (马雪璐, 雷鸣, 化学进展, 2013, 25, 1325.)

    3. [3]

      [3] Dance, I. Z. Anorg. Allg. Chem. 2014, 91.

    4. [4]

      [4] McKee, M. L. J. Comput. Chem. 2007, 28, 1796.

    5. [5]

      [5] Fryzuk, M. D. Science 2013, 340, 1530.

    6. [6]

      [6] Hoffman, B. M.; Lukoyanov, D.; Dean, D. R.; Seefeldt, L. C. Acc. Chem. Res. 2013, 46, 587.

    7. [7]

      [7] Barney, B. M.; Lukoyanov, D.; Yang, T.-C.; Dean, D. R.; Hoffman, B. M.; Seefeldt, L. C. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 17113.

    8. [8]

      [8] Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041.

    9. [9]

      [9] Holland, P. L. Dalton Trans. 2010, 39, 5415.

    10. [10]

      [10] Cavigliasso, G.; Wilson, L.; McAlpine, S.; Attar, M.; Stranger, R.; Yates, B. F. Dalton Trans. 2010, 39, 4529.

    11. [11]

      [11] Gambarotta, S.; Scott, J. Angew. Chem. Int. Ed. 2004, 43, 5298.

    12. [12]

      [12] Mori, M. J. Organomet. Chem. 2004, 689, 4210.

    13. [13]

      [13] Fryzuk, M. D. Acc. Chem. Res. 2009, 42, 127.

    14. [14]

      [14] Fryzuk, M. D.; Johnson, S. A. Coord. Chem. Rev. 2000, 200-202, 379.

    15. [15]

      [15] Hinrichsen, S.; Broda, H.; Gradert, C.; Soncksen, L.; Tuczek, F. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 2012, 108, 17.

    16. [16]

      [16] van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Chem. Soc. Rev. 2014, 43, 5183.

    17. [17]

      [17] (a) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589.

    18. [18]

      (b) Hidai, M.; Uchida, Y.; Tominari, K. J. Am. Chem. Soc. 1972, 94, 110.

    19. [19]

      [18] Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.

    20. [20]

      [19] Kazuya, A.; Yoshihiro, M.; Yoshiaki, N. Nature Chem. 2011, 3, 120.

    21. [21]

      [20] Anderson, J. S.; Rittle, J.; Peters, J. C. Nature 2013, 501, 84.

    22. [22]

      [21] MacLeod, K. C.; Holland, P. L. Nature Chem. 2013, 5, 559.

    23. [23]

      [22] Chen, Y.; Zhou, Y.; Chen, P.; Tao, Y.; Li, Y.; Qu, J. J. Am. Chem. Soc. 2008, 130, 15250.

    24. [24]

      [23] Li, Y.; Li, Y.; Wang, B.; Luo, Y.; Yang, D.; Tong, P.; Zhao, J.; Luo, L.; Zhou, Y.; Chen, S.; Cheng, F.; Qu, J. Nature Chem. 2013, 5, 320.

    25. [25]

      [24] Sproules, S.; Wieghardt, K. Coord. Chem. Rev. 2010, 254, 1358.

    26. [26]

      [25] Felton, G. A.; Vannucci, A. K.; Chen, J.; Lockett, L. T.; Okumura, N.; Petro, B. J.; Zakai, U. I.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L. J. Am. Chem. Soc. 2007, 129, 12521.

    27. [27]

      [26] Muratsugu, S.; Sodeyama, K.; Kitamura, F.; Sugimoto, M.; Tsuneyuki, S.; Miyashita, S.; Kato, T.; Nishihara, H. J. Am. Chem. Soc. 2009, 131, 1388.

    28. [28]

      [27] Luo, Y.; Li, Y.; Yu, H.; Zhao, J.; Chen, Y.; Hou, Z.; Qu, J. Organometallics 2011, 31, 335.

    29. [29]

      [28] Liu, C.; Hua, J.; Lu, J. Acta Chim. Sinica 1988, 46, 315. (刘春万, 华建民, 卢嘉锡, 化学学报, 1988, 46, 315.)

    30. [30]

      [29] Tyler, D. R. Z. Anorg. Allg. Chem. 2014, 31.

    31. [31]

      [30] Bobadova-Parvanova, P.; Wang, Q.; Morokuma, K.; Musaev, G. D. Angew. Chem. 2005, 117, 7263.

    32. [32]

      [31] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    33. [33]

      [32] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

    34. [34]

      [33] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. Gaussian 09, Revision B. 01. Gaussian, Inc, Wallingford, 2010.

    35. [35]

      [34] Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.

    36. [36]

      [35] Ma, X.; Tang, Y.; Lei, M. Dalton Trans. 2014, 43, 11658.

    37. [37]

      [36] Ma, X.; Lei, M.; Liu, S. Organometallics 2015, 34, 1255.

    38. [38]

      [37] Ma, X.; Zhang, X.; Zhang, W.; Lei, M. Phys. Chem. Chem. Phys. 2013, 15, 901.

    39. [39]

      [38] Wang, M.; Zhang, X.; Chen, Z.; Tang, Y.; Lei, M. Sci. China Chem. 2014, 57(9), 1264.

    40. [40]

      [39] Ma, J.; Li, R.; Ren, K.; Ma, X.; Zhu, K.; Geng, Z. Acta Chim. Sinica 2015, 73, 431. (马军, 李榕, 任馗玮, 马禧龙, 朱开礼, 耿志远, 化学学报, 2015, 73, 431.)

    41. [41]

      [40] Liu, S. B.; Rong, C. Y.; Wu, Z. M.; Lu, T. Acta Phys. -Chim. Sin. 2015, 31, 2057. (刘述斌, 荣春英, 吴泽民, 卢天, 物理化学学报, 2015, 31, 2057.)

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

Metrics
  • PDF Downloads(0)
  • Abstract views(543)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return