Citation: Du Fangkai, Xu Jiangsheng, Zeng Fang, Wu Shuizhu. Preparation of a Multifunctional Nano-carrier System Based on Carbon Dots with pH-Triggered Drug Release[J]. Acta Chimica Sinica, ;2016, 74(3): 241-250. doi: 10.6023/A15120780 shu

Preparation of a Multifunctional Nano-carrier System Based on Carbon Dots with pH-Triggered Drug Release

  • Corresponding author: Du Fangkai, dufangkai501@163.com Wu Shuizhu, shzhwu@scut.edu.cn
  • Received Date: 15 December 2015

    Fund Project: the National Key Basic Research Program of China 2013CB834702NSFC 21474031, 21174040, 21025415China Postdoctoral Science Foundation 2015M572305

Figures(11)

  • A folated-functionalized nano-carrier system based on carbon dots was successfully synthesized for cancer cell-targeted drug delivery. In this report, using microwave-assisted assay the fluorescent CDots could be obtained via microwave-assisted pyrolysis of glycerol in the presence of 4,7,10-trioxa-1,13-tridecanediamine. The particle size of the CDots was confirmed by AFM and HR-TEM. The finding showed that the average diameter of CDots is about 4 nm. Incorporating (via a cleavable bond) an anticancer drug, which was Doxorubicin (DOX) in this study, and a targeting ligand (folic acid) onto carbon dot produces a more specific anticancer prodrug DOX-CDots-FA. The structure of the DOX-CDots-FA was characterized by 1H NMR and UV-vis analysis. The loading content of DOX was determined by UV-vis analysis to be 13.5 wt%, and the content of the targeting ligand FA was calculated as 3.13 wt% based on 1H NMR measurement. Particle size parameter of DOX-CDots-FA was determined by HR-TEM. The results showed that the average diameter of DOX-CDots-FA is about 6 nm. In addition, DOX-CDots-FA showed pH-dependent release, that is, the drug releases faster in pH=5.2 buffer solution than in pH=7.4 one. The cytotoxicity of DOX-CDots-FA, DOX-CDots nanoparticles and free DOX were evaluated and compared using HeLa and L929 cell lines. For the FR-positive HeLa cells, DOX-CDots-FA nanoparticles exhibit superior cytotoxicity as compared to DOX-CDots nanoparticles. These results showed that the FA moieties in DOX-CDots-FA nanoparticles play an important role in enhancing the cytotoxic effect as they increase the binding to FR-expressing cells. This high affinity binding subsequently increases their intracellular uptake as a result of receptor-mediated endocytosis. The FA molecules present on the surface of the nanoparticle prodrug do not have a remarkable effect on cellular uptake and/or cytotoxicity for FR-negative L929 cell lines. The confocal microscope studies revealed that FA-conjugated prodrug DOX-CDots-FA exhibited higher cellular uptake than FA-free nanosystem DOX-CDots which also led to higher cytotoxicity. Thus, multifunctional nano-carrier system could be a promising nanosize anticancer drug carrier with excellent targeting property.
  • 加载中
    1. [1]

      Finkel, T.; Serrano, M.; Blasco, M. A. Nature 2007, 448, 767. 

    2. [2]

      Davis, M. E.; Chen, Z.; Shin, D. M. Nat. Rev. Drug Discovery 2008, 7, 771. 

    3. [3]

       

    4. [4]

      Pecot, C. V.; Calin, G. A.; Coleman, R. L.; Lopez-Berestein, G.; Sood, A. K. Nat. Rev. Cancer 2011, 11, 59. 

    5. [5]

      Modi, S.; Swetha, M. G.; Goswami, D.; Gupta, G. D.; Mayor, S.; Krishnan, Y. Nat. Nanotechnol. 2009, 4, 325.

    6. [6]

      Wu, Y. L.; Chen, W.; Meng, F. H.; Wang, Z. J.; Cheng, R.; Deng, C.; Liu, H. Y.; Zhong, Z. Y. J. Controlled Release 2012, 164, 338. 

    7. [7]

      Kaminskas, L. M.; McLeod, V. M.; Kelly, B. D.; Cullinane, C.; Sberna, G.; Williamson, M.; Boyd, B. J.; Owen, D. J.; Porter, C. J. Mol. Pharm. 2012, 9, 422. 

    8. [8]

      Xiao, Y.; Hong, H.; Javadi, A.; Engle, J. W.; Xu, W.; Yang, Y.; Zhang, Y.; Barnhart, T. E.; Cai, W.; Gong, S. Biomaterials 2012, 33, 3071.

    9. [9]

       

    10. [10]

      Liu, C. J.; Zhang, P.; Tian, F.; Li, W. C.; Li, F.; Liu, W. G. J. Mater. Chem. 2011, 21, 13163. 

    11. [11]

      Baker, S. N.; Baker, G. A. Angew. Chem., Int. Ed.2010, 49, 6726. 

    12. [12]

       

    13. [13]

      Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Adv. Funct. Mater. 2011, 21, 1027. 

    14. [14]

    15. [15]

      Yang, Y. H.; Cui, J. H.; Zheng, M. T.; Hu, C. F.; Tan, S. Z.; Xiao, Y.; Yang, Q.; Liu, Y. L. Chem. Commun. 2012, 48, 380. 

    16. [16]

       

    17. [17]

      Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Adv. Mater. 2013, 25, 6569. 

    18. [18]

      Choi, Y.; Kim, S.; Choi, M. H.; Ryoo, S. R.; Park, J.; Min, D. H.; Kim, B. S. Adv. Funct. Mater. 2014, 24, 5781. 

    19. [19]

      Zhou, L.; Li, Z. H.; Liu, Z.; Ren, J. S.; Qu, X. G. Langmuir 2013, 29, 6396. 

    20. [20]

      Pandey, S.; Thakur, M.; Mewada, A.; Anjarlekar, D.; Mishra, N.; Sharon, M. J. Mater. Chem. B 2013, 1, 4972. 

    21. [21]

      Fan, J. Q.; Fang, G.; Zeng, F.; Wang, X. D.; Wu, S. Z. Small 2013, 9, 613. 

    22. [22]

      Peng, H.; Travas, S. J. Chem. Mater. 2009, 21, 5563. 

    23. [23]

      Allen, H. M.; Cullis, P. R. Adv. Drug Delivery Rev. 2013, 65, 36. 

    24. [24]

      Zhang, P.; Li, W. C.; Zhai, X. Y.; Liu, C. J.; Dai, L. M.; Liu, W. G. Chem. Commun. 2012, 48, 10431. 

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    4. [4]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    5. [5]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    6. [6]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    7. [7]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    8. [8]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    11. [11]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    12. [12]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    13. [13]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    14. [14]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    15. [15]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    19. [19]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(0)
  • Abstract views(1638)
  • HTML views(327)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return