Citation: Yang Yinuo, Zhang Qi, Shi Jing, Fu Yao. Mechanism Study of Mn(I) Complex-catalyzed Imines and Alkynes Dehydrogenation Coupling Reaction[J]. Acta Chimica Sinica, ;2016, 74(5): 422-428. doi: 10.6023/A15110736 shu

Mechanism Study of Mn(I) Complex-catalyzed Imines and Alkynes Dehydrogenation Coupling Reaction

  • Corresponding author: Shi Jing, shijing@ustc.edu.cn Fu Yao, fuyao@ustc.edu.cn
  • Received Date: 21 November 2015

    Fund Project: Fundamental Research Funds for the Central Universities WK2060190025the National Natural Science Foundation of China 21325208Fundamental Research Funds for the Central Universities FRF-TP-14-015A2the National Natural Science Foundation of China 21361140372the National Natural Science Foundation of China 21202006973 Program 2012CB215306Science Foundation of The Chinese Academy of Sciences KJCX2-EW-J02the National Natural Science Foundation of China 21172209Fundamental Research Funds for the Central Universities WK2060190040

Figures(6)

  • With the development and widespread use of transition metal catalysts, C—H activation has become a hot topic in organic synthesis, especially in the construction of C—C bond of organic compounds. As an important and cheap catalyst, manganese complex has shown great potential for catalyzing C—H activation both in academic and industrial applications. In this paper, the mechanism of manganese-catalyzed dehydrogenative [4+2] annulation by C—H/N—H activation was investigated systematically with the aid of density functional theory (DFT) calculations in 1, 4-dioxane solvent. In detail, we use M06-L/[SDD:6-311+G(d, p)(SMD)]//M06-L/[LANL2DZ:6-31G(d)] to examine the Gibbs free energy, structure and other properties of possible intermediates and transition states in this catalytic cycle. By comprehensive comparison and discussion, we obtained a favorable pathway consisting of five steps: (1) catalyst initiation occurred with the assistance of bromine anion rather than imide to form active catalyst; (2) alkyne inserted into the active catalyst to generate a seven-membered manganacycle after dissociation of a carbon monoxide; (3) double bond migration happened in this seven-membered manganacycle to form a product precursor; (4) the product precursor would dissociate by β-H elimination and generated product isoquinoline and active Mn—H complex; (5) the active Mn—H complex was subsequently combined with an imine followed by dehydrogenative C—H activation to complete the whole catalytic cycle. In this context, the reason for the highly atom-economical C—H activation by direct dehydrogenation (eliminates the necessity for oxidants or additives) has been clarified by this mechanism. The present study was aimed at further understanding of Mn(I)-catalyzed dehydrogenative C—H activation, and provided more theoretical basis for future more Mn-catalyzed C—H activation.
  • 加载中
    1. [1]

      Wencel-Delord, J.; Glorious, F. Nat. Chem. 2013, 5, 369. (b) Ackermann, L. Chem. Rev. 2011, 111, 1315. (c) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976. (e) Iwai, T.; Sawamura, M. ACS Catal. 2015, 5, 5031. (f) Segawa, Y.; Maekawa, T.; Itami, K. Angew. Chem., Int. Ed. 2015, 54, 66. (g) Topczewski, J. J.; Sanford, M. S. Chem. Sci. 2015, 6, 70. (h) Liao, G.; Shi, B. Acta Chim. Sinica 2015, 73, 1283. (廖港, 史炳锋, 化学学报, 2015, 73, 1283.) (i) Zhou, L.; Lu, W. Acta Chim. Sinica 2015, 73, 1250. (周励宏, 陆文军, 化学学报, 2015, 73, 1250.) (j) Zhao, J.; Zhang, Q. Acta Chim. Sinica 2015, 73, 1235. (赵金钵, 张前, 化学学报, 2015, 73, 1235.) (k) Shang, X.; Liu, Z. Acta Chim. Sinica 2015, 73, 1275. (尚筱洁, 柳忠全, 化学学报, 2015, 73, 1275.) (l) Pan, F.; Shi, Z. Acta Chim. Sinica 2012, 70, 1679. (潘菲, 施章杰, 化学学报, 2012, 70, 1679.) (m) Zhao, H.; Sun, H.; Wang, L.; Li, X. Acta Chim. Sinica 2015, 73, 1307. (n) Qiu, H.; Zhang, D.; Liu, S.; Qiu, L.; Zhou, J.; Qian, Y.; Zhai, C.; Hu, W. Acta Chim. Sinica 2012, 70, 2484. (邱晃, 张丹, 刘顺英, 邱林, 周俊, 钱宇, 翟昌伟, 胡文浩, 化学学报, 2012, 70, 2484.)

    2. [2]

      Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308. (b) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (c) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464. (d) Hickman, A. J.; Sanford, M. S. Nature 2012, 484, 177. (e) Sun, C. L.; Li, B. J.; Shi, J. Z. Chem. Rev. 2011, 111, 1293. (f) Ma, Y.; Li, W.; Yu, B. Acta Chim. Sinica 2013, 71, 541. (马玉勇, 李微, 俞飚, 化学学报, 2013, 71, 541.) (g) Xu, J.; Chen, P.; Ye, J.; Liu, G. Acta Chim. Sinica 2015, 73, 1294. (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294.) (h) Zhang, Q.; Lü, Y.; Li, Y.; Xiong, T.; Zhang, Q. Acta Chim. Sinica 2014, 72, 1139. (张茜, 吕允贺, 李燕, 熊涛, 张前, 化学学报, 2014, 72, 1139.) (i) Cai, H.; Li, D.; Liu, Z.; Wang, G. Acta Chim. Sinica 2013, 71, 717.

    3. [3]

      Gunay, A.; Theopold, K. H. Chem. Rev. 2010, 110, 1060.  doi: 10.1021/cr900269x

    4. [4]

      Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K. Angew. Chem., Int. Ed. 2007, 46, 6518.  doi: 10.1002/(ISSN)1521-3773

    5. [5]

      Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.  doi: 10.1021/ja311689k

    6. [6]

      He, R.; Huang, Z.-T.; Zheng, Q.-Y.; Wang, C. Angew. Chem., Int. Ed. 2014, 53, 4950.  doi: 10.1002/anie.201402575

    7. [7]

      Zhou, B.; Chen, H.; Wang, C. J. Am. Chem. Soc. 2013, 135, 1264.  doi: 10.1021/ja311689k

    8. [8]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Jr. Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B. 01, Gaussian, Inc., Wallingford CT, 2010

    9. [9]

      Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.  doi: 10.1063/1.2370993

    10. [10]

      Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.  doi: 10.1063/1.448800

    11. [11]

      Fukui, K. Acc. Chem. Res. 1981, 14, 363. (b) Fukui, K. J. Phys. Chem. 1970, 74, 4161.

    12. [12]

      Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.  doi: 10.1021/jp810292n

    13. [13]

      Fuentealba, P.; Preuss, H.; Stoll, H.; Vonszentpaly, L. Chem. Phys. Lett. 1982, 89, 418.  doi: 10.1016/0009-2614(82)80012-2

    14. [14]

      Lan, Y.; Liu, P.; Newman, S. G.; Lautens, M.; Houk, K. N. Chem. Sci. 2012, 3, 1987. (b) Yu, H.; Fu, Y. Chem. Eur. J. 2012, 18, 16765. (c) Ford, D. D.; Nielsen, L. P. C.; Zuend, S. J.; Musgrave, C. B.; Jacobsen, E. N. J. Am. Chem. Soc. 2013, 135, 15595. (d) Suresh, C. H.; Sayyed, F. B. J. Phys. Chem. A 2013, 117, 10455. (e) Yi, J.; Lu, X.; Sun, Y.-Y.; Xiao, B.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 12409. (f) Zhang, S. L.; Shi, L.; Ding, Y. Q. J. Am. Chem. Soc. 2011, 133, 20218. (g) Proutiere, F.; Aufiero, M.; Schoenebeck, F. J. Am. Chem. Soc. 2012, 134, 606.

    15. [15]

      Xie, H.; Lin, Z. Organometallics 2014, 33, 892; (b) Schoenebeck, F.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2496; (c) Ariafard, A.; Brookes, N. J.; Stanger, R.; Yates, B. F. Organometallics 2011, 30, 1340.

  • 加载中
    1. [1]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    2. [2]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    7. [7]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(1933)
  • HTML views(478)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return