Citation: Cui Xianghong, Chen Huaiyin, Yang Tao. Research Progress on the Preparation and Application of Nano-sized Molybdenum Disulfide[J]. Acta Chimica Sinica, ;2016, 74(5): 392-400. doi: 10.6023/A15110712 shu

Research Progress on the Preparation and Application of Nano-sized Molybdenum Disulfide

  • Corresponding author: Yang Tao, taoyang@qust.edu.cn
  • Received Date: 12 November 2015

    Fund Project: the National Natural Science Foundation of China 41476083the National Natural Science Foundation of China 21275084

Figures(10)

  • In recent years, molybdenum disulfide (MoS2), as a material that shows analogous structure to graphene, has attracted more and more attentions of scientists. Due to its layered structure, special electronic and electrochemical properties, large specific surface area and the potential of surface modification, nano-sized MoS2 is widely used in many fields. In this review, the authors introduce several preparation methods of nano-sized MoS2, mainly including micromechanical cleavage, liquid exfoliation, lithium intercalation, hydrothermal reaction, vapor deposition and thermal decomposition. All these methods possess their own advantages, but at present, there is no good ways to achieve the large-scale production of large-area MoS2 nanosheets with controllable layer number or MoS2 nano-architectures with controllable shape. Apart from the preparation methods, the authors mainly introduce the research progress on the application of nano-sized MoS2 in the fields of optoelectronic devices, catalysis, sensing, energy storage and conversion, and stress the research status of the application in the aspects of electrochemistry and biosensing analysis. In addition, the development direction of nano-sized MoS2 in the future is also been pointed out. According to the present researches, nano-sized MoS2 possesses enormous potential in the fields of energy storage and conversion, sensing analysis, and devices, etc., and it may become a kind of multi-functional material with excellent performance in the wake of graphene.
  • 加载中
    1. [1]

      Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271.  doi: 10.1021/nl903868w

    2. [2]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nature Nanotech. 2011, 6, 147.  doi: 10.1038/nnano.2010.279

    3. [3]

      Zhou, K. Q.; Jiang, S. H.; Bao, C. L.; Song, L.; Wang, B. B.; Tang, G.; Hu, Y.; Gui, Z. RSC Adv. 2012, 2, 11695.  doi: 10.1039/c2ra21719h

    4. [4]

      Hu, K.-H.; Wo, H.-Z.; Han, X.-Z.; Hu, X.-G. Mod. Chem. Ind. 2003, 23, 14.

    5. [5]

      Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G. Angew. Chem., Int. Ed. 2011, 50, 11093.  doi: 10.1002/anie.v50.47

    6. [6]

      Shah, P. B.; Amani, M.; Chin, M. L.; O'Regan, T. P.; Crowne, F. J.; Dubey, M. Solid State Electron. 2014, 91, 87.  doi: 10.1016/j.sse.2013.10.010

    7. [7]

      Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Small 2012, 8, 63.  doi: 10.1002/smll.201101016

    8. [8]

      Li, Y. G.; Li, Y. L.; Araujo, C. M.; Luo, W.; Ahuja, R. Catal. Sci. Technol. 2013, 3, 2214.  doi: 10.1039/c3cy00207a

    9. [9]

      Yang, L. C.; Wang, S. N.; Mao, J. J.; Deng, J. W.; Gao, Q. S.; Tang, Y.; Schmidt, O. G. Adv. Mater. 2013, 25, 1180.  doi: 10.1002/adma.201203999

    10. [10]

      Shen, C.; Zhang, J.; Shi, D.-X.; Zhang, G.-Y. Acta Chim. Sinica 2015, 73, 954.  doi: 10.6023/A15030220
       

    11. [11]

      Ge, J.; Ou, E. C.; Yu, R. Q.; Chu, X. J. Mater. Chem. B 2014, 2, 625.  doi: 10.1039/C3TB21570A

    12. [12]

      Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. PNAS 2005, 102, 10451.  doi: 10.1073/pnas.0502848102

    13. [13]

      Lee, C. G.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4, 2695.  doi: 10.1021/nn1003937

    14. [14]

      Yin, Z. Y.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. ACS Nano 2012, 6, 74.  doi: 10.1021/nn2024557

    15. [15]

      Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.  doi: 10.1126/science.1194975

    16. [16]

      Zhou, K. G.; Mao, N. N.; Wang, H. X.; Peng, Y.; Zhang, H. L. Angew. Chem. Int. Ed. 2011, 50, 10839.  doi: 10.1002/anie.v50.46

    17. [17]

      Matte, H.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R Angew. Chem. Int. Ed. 2010, 49, 4059.  doi: 10.1002/anie.201000009

    18. [18]

      Li, X. L.; Li, Y. D. J. Phys. Chem. B 2004, 108, 13893.  doi: 10.1021/jp0367575

    19. [19]

      Ma, L.; Chen, W. X.; Li, H.; Xu, Z. D. Mater. Chem. Phys. 2009, 116, 400.  doi: 10.1016/j.matchemphys.2009.04.007

    20. [20]

      Nath, M.; Govindaraj, A.; Rao, C. N. R. Adv. Mater. 2001, 13, 283.  doi: 10.1002/(ISSN)1521-4095

    21. [21]

      Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.; Lai, C. S.; Li, L. J. Nano Lett. 2012, 12, 1538.  doi: 10.1021/nl2043612

    22. [22]

      Qin, X. P.; Ke, P. L.; Wang, A. Y.; Kim, K. H. Surf. Coat. Technol. 2013, 228, 275.  doi: 10.1016/j.surfcoat.2013.04.040

    23. [23]

      Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T. W. Adv. Mater. 2012, 24, 2320.  doi: 10.1002/adma.201104798

    24. [24]

      Liu, H.; Si, M. W.; Najmaei, S.; Neal, A. T.; Du, Y. C.; Ajayan, P. M.; Lou, J.; Ye, P. D. Nano Lett. 2013, 13, 2640.  doi: 10.1021/nl400778q

    25. [25]

      Li, X.; Li, X. M.; Zang, X. B.; Zhu, M.; He, Y. Y.; Wang, K. L.; Xie, D.; Zhu, H. W. Nanoscale 2015, 7, 8398.  doi: 10.1039/C5NR00904A

    26. [26]

      Xu, G.-C.; Lu, Z.-X.; Zhang, Q.; Qiu, H.-L.; Jiao, L.-Y. Acta Chim. Sinica 2015, 73, 895.  doi: 10.6023/A15030203
       

    27. [27]

      Radisavljevic, B.; Whitwick, M. B.; Kis, A. ACS Nano 2011, 5, 9934.  doi: 10.1021/nn203715c

    28. [28]

      Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Nature Mater. 2014, 13, 1128.  doi: 10.1038/nmat4080

    29. [29]

      Wang, X.; Song, L.; Chen, L.; Song, H.-H.; Zhang, Y.-P. Adv. Mater. Chem. 2014, 2, 49.  doi: 10.12677/AMC.2014.24008

    30. [30]

      Samnakay, R.; Jiang, C.; Rumyantsev, S. L.; Shur, M. S.; Balandin, A. A. Appl. Phys. Lett. 2015, 106, 023115.  doi: 10.1063/1.4905694

    31. [31]

      Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. J. Am. Chem. Soc. 2011, 133, 7296.  doi: 10.1021/ja201269b

    32. [32]

      Wang, T. Y.; Liu, L.; Zhu, Z. W.; Papakonstantinou, P.; Hu, J. B.; Liu, H. Y.; Li, M. X. Energy Environ. Sci. 2013, 6, 625.  doi: 10.1039/C2EE23513G

    33. [33]

      Shi, J.-P.; Ma, D.-L.; Zhang, Y.-F.; Liu, Z.-F. Acta Chim. Sinica 2015, 73, 877.  doi: 10.6023/A15030157
       

    34. [34]

      Zhou, W. J.; Yin, Z. Y.; Du, Y. P.; Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, H.; Wang, J. Y.; Zhang, H. Small 2013, 9, 140.  doi: 10.1002/smll.v9.1

    35. [35]

      Wang, T. Y.; Gao, D. L.; Zhuo, J. Q.; Zhu, Z. W.; Papakonstantinou, P.; Li, Y.; Li, M. X. Chem. Eur. J. 2013, 19, 11939.  doi: 10.1002/chem.201301406

    36. [36]

      Wang, Y.; Zhang, L.-M.; Hu, T.-J. Acta Chim. Sinica 2015, 73, 316.  doi: 10.6023/A14110787
       

    37. [37]

      Chen, J.; Li, S. L.; Xu, Q.; Tanaka, K. Chem. Commun. 2002, 1722.

    38. [38]

      Chang, K.; Chen, W. X. Chem. Commun. 2011, 47, 4252.  doi: 10.1039/c1cc10631g

    39. [39]

      Hu, L. R.; Ren, Y. M.; Yang, H. X.; Xu, Q. ACS Appl. Mater. Interfaces 2014, 6, 14644.  doi: 10.1021/am503995s

    40. [40]

      Zhu, J. X.; Sun, W. P.; Yang, D.; Zhang, Y.; Hoon, H. H.; Zhang, H.; Yan, Q. Y. Small 2015, 11, 4123.  doi: 10.1002/smll.v11.33

    41. [41]

      Ma, G. F.; Peng, H.; Mu, J. J.; Huang, H. H.; Zhou, X. Z.; Lei, Z. Q. J. Power Sources 2013, 229, 72.  doi: 10.1016/j.jpowsour.2012.11.088

    42. [42]

      Da Silveira Firmiano, E. G.; Rabelo, A. C.; Dalmaschio, C. J.; Pinheiro, A. N.; Pereira, E. C.; Schreiner, W. H.; Leite, E. R. Adv. Energy Mater. 2014, 4, 1301380.

    43. [43]

      Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. J. Am. Chem. Soc. 2013, 135, 5998.  doi: 10.1021/ja4019572

    44. [44]

      Wang, X. X.; Nan, F. X.; Zhao, J. L.; Yang, T.; Ge, T.; Jiao, K. Biosens. Bioelectron. 2015, 64, 386.  doi: 10.1016/j.bios.2014.09.030

    45. [45]

      Wang, T. Y.; Zhu, R. Z.; Zhuo, J. Q.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. Anal. Chem. 2014, 86, 12064.  doi: 10.1021/ac5027786

    46. [46]

      Huang, K. J.; Liu, Y. J.; Wang, H. B.; Wang, Y. Y.; Liu, Y. M. Biosens. Bioelectron. 2014, 55, 195.  doi: 10.1016/j.bios.2013.11.061

    47. [47]

      Cao, X. Y. Microchim. Acta 2014, 181, 1133.  doi: 10.1007/s00604-014-1301-y

    48. [48]

      Wang, L.; Wang, Y.; Wong, J. I.; Palacios, T.; Kong, J.; Yang, H. Y. Small 2014, 10, 1101.  doi: 10.1002/smll.201302081

    49. [49]

      Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Sci. Rep. 2014, 4, 7352.  doi: 10.1038/srep07352

    50. [50]

      Kong, R. M.; Ding, L.; Wang, Z. J.; You, J. M.; Qu, F. L. Anal. Bioanal. Chem. 2015, 407, 369.  doi: 10.1007/s00216-014-8267-9

    51. [51]

      Wang, X.; Chu, C. C.; Shen, L.; Deng, W. P.; Yan, M.; Ge, S. G.; Yu, J. H.; Song, X. R. Sensor. Actuat. B 2015, 206, 30.  doi: 10.1016/j.snb.2014.09.028

    52. [52]

      Liu, H.; Su, X.; Duan, C. Y.; Dong, X. N.; Zhu, Z. F. Mater. Lett. 2014, 122, 182.  doi: 10.1016/j.matlet.2014.02.047

    53. [53]

      Wang, T. Y.; Zhu, H. C.; Zhuo, J. Q.; Zhu, Z. W.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M. X. Anal. Chem. 2013, 85, 10289.  doi: 10.1021/ac402114c

    54. [54]

      Wu, S. X.; Zeng, Z. Y.; He, Q. Y.; Wang, Z. J.; Wang, S. J.; Du, Y. P.; Yin, Z. Y.; Sun, X. P.; Chen, W.; Zhang, H. Small 2012, 8, 2264.  doi: 10.1002/smll.201200044

    55. [55]

      Su, S.; Sun, H. F.; Xu, F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Microchim. Acta 2014, 181, 1497.  doi: 10.1007/s00604-014-1178-9

    56. [56]

      Huang, K. J.; Zhang, J. Z.; Liu, Y. J.; Wang, L. L. Sensor. Actuat. B 2014, 194, 303.  doi: 10.1016/j.snb.2013.12.106

    57. [57]

      Yang, R. R.; Zhao, J. L.; Chen, M. J.; Yang, T.; Luo, S. Z.; Jiao, K. Talanta 2015, 131, 619.  doi: 10.1016/j.talanta.2014.08.035

    58. [58]

      Yang, T.; Yang, R. R.; Chen, H. Y.; Nan, F. X.; Ge, T.; Jiao, K. ACS Appl. Mater. Interfaces 2015, 7, 2867.  doi: 10.1021/am5081716

    59. [59]

      Yang, T.; Chen, H. Y.; Yang, R. R.; Jiang, Y. H.; Li, W. H.; Jiao, K. Microchim. Acta 2015, 182, 2623.  doi: 10.1007/s00604-015-1598-1

    60. [60]

      Yang, T.; Chen, M. J.; Nan, F. X.; Chen, L. H.; Luo, X. L.; Jiao, K. J. Mater. Chem. B 2015, 3, 4884.

    61. [61]

      Huang, K. J.; Wang, L.; Li, J.; Liu, Y. M. Sensor. Actuat. B 2013, 178, 671.  doi: 10.1016/j.snb.2013.01.028

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    3. [3]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    4. [4]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    5. [5]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    6. [6]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    7. [7]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    10. [10]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    11. [11]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    12. [12]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    15. [15]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    16. [16]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    17. [17]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(2696)
  • HTML views(517)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return