Citation: Xu Xin, Peng Sikan, Zhang Jin, Lu Shanfu, Xiang Yan. Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell Ⅱ: Optimization of Cathode Catalyst Layer[J]. Acta Chimica Sinica, ;2016, 74(3): 271-276. doi: 10.6023/A15100687 shu

Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell Ⅱ: Optimization of Cathode Catalyst Layer

  • Corresponding author: Lu Shanfu, lusf@buaa.edu.cn Xiang Yan, xiangy@buaa.edu.cn
  • Received Date: 31 October 2015

    Fund Project: National High Technology Research and Development Program of China 2013AA031902Natural Science Foundation of Beijing 2132051the National Natural Science Foundation of China U1137602

Figures(6)

  • Bipolar fuel cell (BPFC) is a new kind polymer electrolyte membrane fuel cell (PEMFC) with acidic-alkaline bipolar interface formed by acidic and alkaline polyelectrolyte both used in one cell. BPFC has shown some novel characterizations: (1) water generated at the bipolar interface would provide the possibility to devise self-humidification over the entire cell, which would simplify the water manager system; (2) alkaline cathode with facilitated electrokinetics allows for the use of lower catalyst loading or non-noble catalysts, such as silver and nickel. In our previous work, the effect of bipolar membrane electrode configuration on the cell output performance was evaluated and the optimal configuration was achieved. The BPFC with optimal membrane electrode configuration has been operated under completely self-humidifying conditions for prolonged periods successfully. However, there exists a big gap with the cell performance between BPFC and the state-of-art PEMFC. In order to improve the fuel cell performance, optimization of the membrane electrode configurations and further advances in fabricating bipolar interface had been conducted in our previous work. Another issue that affects the performance of the fuel cell is the structure and composition of the catalyst layer. Since the oxygen reduction reaction (ORR) at cathode influenced the fuel cell performance a lot, the improvement of electrode was mainly focused on the cathode catalyst layer. In the present work, thin hydrophilic electrode and thick hydrophobic electrode were used as cathode for BPFC. The influence of ionomer binder, quaternary ammonium polysulfone (QAPSF) in thin hydrophilic electrode and polytetrafluoroethylene (PTFE) in thick hydrophobic electrode, concentration on BPFC performance was studied. The results indicated that the optimal content of QAPSF in thin hydrophilic cathode was 20 wt%, and the peak power density of BPFC reached to 186.1 mW/cm2 at 25 ℃ without humidification. While the PTFE in the thick hydrophobic cathode was also 20 wt% with a peak power density of 461.5 mW/cm2 at 40 ℃ without humidification. Due to the high demand of alkaline cathode for drainage, the thick hydrophobic electrode behaved better than thin hydrophilic electrode in BPFC.
  • 加载中
    1. [1]

      Peng, S.; Xu, X.; Lu, S.; Sui, P.-C.; Djilali, N.; Xiang, Y. J. Power Sources 2015, 299, 273. 

    2. [2]

      Ünlü, M.; Zhou, J.; Kohl, P. A. J. Phys. Chem. C 2009, 113(26), 11416. 

    3. [3]

      Pan, J.; Lu, S.; Li, Y.; Huang, A.; Zhuang, L.; Lu, J. Adv. Funct. Mater. 2009, 20, 312.

    4. [4]

      Lu, S. F.; Pan, J.; Huang, A. B.; Zhuang, L.; Lu, J. T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(52), 20611. 

    5. [5]

      Ünlü, M.; Zhou, J.; Kohl, P. A. Angew. Chem., Int. Ed. 2010, 49(7), 1299. 

    6. [6]

      Ünlü, M.; Zhou, J.; Kohl, P. A. Fuel Cells 2010, 10(1), 54.

    7. [7]

       

    8. [8]

    9. [9]

      Lin, R.; Zhao, T.; Zhang, H.; Cao, C.; Li, B.; Ma, J. Chin. J. Mech. Eng. 2012, 25, 1171.

    10. [10]

      Peng, S.; Lu, S.; Zhang, J.; Sui, P.-C.; Xiang, Y. Phys. Chem. Chem. Phys. 2013, 15(27), 11217. 

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    5. [5]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    6. [6]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    7. [7]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    10. [10]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    11. [11]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    14. [14]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    17. [17]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    18. [18]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    19. [19]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    20. [20]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

Metrics
  • PDF Downloads(0)
  • Abstract views(1673)
  • HTML views(187)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return