Citation: Qi Lihua, Cai Wensheng, Shao Xueguang. Effect of Temperature on Near-infrared Spectra of n-Alkanes[J]. Acta Chimica Sinica, ;2015, 74(2): 172-178. doi: 10.6023/A15100664 shu

Effect of Temperature on Near-infrared Spectra of n-Alkanes

  • Corresponding author: Shao Xueguang, xshao@nankai.edu.cn
  • Received Date: 17 October 2015

    Fund Project: MOE Innovation Team IRT13022the National Natural Science Foundation of China No. 21475068

Figures(6)

  • Effect of temperature on near-infrared (NIR) spectra has been studied and applied to structural and quantitative analyses. To investigate the effect of temperature on NIR spectra of alkyl organic system, n-alkanes were studied in this work. NIR spectra of pure n-alkanes (hexane to decane), binary (hexane and octane) and ternary (octane, nonane and decane) mixtures were measured. In the experiments, temperature was controlled to change from 60 to 20℃ with a step of ca. 5℃. Comparing the spectra at different temperatures, only a little difference in peak intensity of some bands can be found. Therefore, alternating trilinear decomposition (ATLD) algorithm was adopted to analyze the three-order data matrix. The results show that two spectral loadings are obtained because the influence of temperature on the spectra of terminal ethyl (C2H5) groups differs from that of mid-chain methylene (CH2) groups. Furthermore, the temperature scores of CH2 and C2H5 groups decrease linearly with temperature, implying that the temperature effect can be quantitatively described by a quantitative spectra-temperature relationship (QSTR) model. The QSTR model provides an efficient way to predict the temperature of n-alkane solutions. Good linearity also exists between sample scores and carbon number or the relative content of CH2 and C2H5 groups in the molecules of the n-alkanes. Linear models between the two scores and the relative content of CH2 and C2H5 groups are obtained, respectively, using the least square fitting of the score and the relative contents. The model can be used for prediction of the relative content of CH2 and C2H5 groups in mixtures, which can further be used to estimate the composition of the mixtures. Furthermore, the relationship between the scores and the carbon atom numbers is modeled using multivariate linear regression (MLR). The composition of n-alkane mixtures can also be estimated through the predicted carbon number using the MLR model. These models are validated by binary and ternary mixtures of the n-alkanes. It was indicated that the relative contents of CH2 and C2H5 groups or the carbon atom number can be predicted using the models. Therefore, a new way for quantitative estimation of the composition in n-alkane mixtures was developed using the temperature effect of the near-infrared spectra.
  • 加载中
    1. [1]

    2. [2]

      Du, W.; Chen, Z.-P.; Zhong, L.-J.; Wang, S.-X.; Yu, R.-Q.; Nordon, A.; Littlejohn, D.; Holden, M. Anal. Chim. Acta 2011, 690, 64. 

    3. [3]

    4. [4]

      Zhang, X.; Du, Y.-P.; Tong, P.-J.; Li, W.; Iqbal, J.; Wu, T.; Hu, H.-L.; Zhang, W.-B. Chemom. Intell. Lab. Syst. 2014, 134, 58.

    5. [5]

       

    6. [6]

       

    7. [7]

      Wlufer, F.; Kok, W. T.; Smilde, A. K. Anal. Chem. 1998, 70, 1761. 

    8. [8]

      Ozaki, Y.; Liu, Y.; Noda, I. Appl. Spectrosc. 1997, 51, 526. 

    9. [9]

      Liu, Y.-L.; Ozaki, Y. J. Phys. Chem. 1996, 100, 7326. 

    10. [10]

      Wuttke, R.; Hofmann, H.; Nettels, D.; Borgia, M. B.; Mittal, J.; Best, R. B.; Schuler, B. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 5213. 

    11. [11]

      Liu, Z.-G.; Zhao, L.; Zhou, Z.; Sun, T.-Z.; Zu, Y.-G. Scanning 2012, 34, 302.

    12. [12]

      Jing, Y.; Wu, P.-Y. Cellulose 2013, 20, 67.

    13. [13]

      Segtnan, V. H.; Sasic, S.; Isaksson, T.; Ozaki, Y. Anal. Chem. 2001, 73, 3153.

    14. [14]

      Sasic, S.; Segtnan, V. H.; Ozaki, Y. J. Phys. Chem. A 2002, 106, 760. 

    15. [15]

      Shao, X.-G.; Kang, J.; Cai, W.-S. Talanta 2010, 82, 1017.

    16. [16]

      Kang, J.; Cai, W.-S.; Shao, X.-G. Talanta 2011, 85, 420.

    17. [17]

      Shan, R.-F.; Zhao, Y.; Fan, M.-L.; Liu, X.-W.; Cai, W.-S.; Shao, X. G. Talanta 2015, 131, 170. 

    18. [18]

      Tosi, C.; Pinto, A. Spectrochim. Acta 1972, 28A, 585.

    19. [19]

      Mullins, O. C.; Joshi, N. B.; Groenzin, H.; Daigle, T.; Crowell, C.; Joseph, M. T.; Jamaluddin, A. Appl. Spectrosc. 2000, 54, 624. 

    20. [20]

      Garcia, G.; Trenzado, J. L.; Alcalde, R.; Rodriguez-Delgado, A.; Atihan, M.; Aparicio, S. J. Phys. Chem. B 2014, 118, 11310. 

    21. [21]

      Tojo, J.; Canosa, J.; Rodriguez, A.; Ortega, J.; Dieppa, R. J. Chem. Eng. Data 2004, 49, 86. 

    22. [22]

      Shao, X.-G.; Leung, A. K. M.; Chau, F. T. Acc. Chem. Res. 2003, 36, 276. 

    23. [23]

      Shan, R.-F.; Cai, W.-S.; Shao, X.-G. Chemom. Intell. Lab. Syst. 2014, 131, 31.

    24. [24]

      Ni, Y.-N.; Wang, Y.; Kokot, S. Talanta 2009, 78, 432.

    25. [25]

      Ni, Y.-N.; Song, R. M.; Kokot, S. Spectrochim. Acta, Part A 2012, 96, 252. 

    26. [26]

      Kwasniewicz, M.; Czarnecki, M. A. Spectrochim. Acta, Part A 2015, 143, 165. 

    27. [27]

      Parker, M. E.; Steele, D.; Smith, M. J. C. J. Phys. Chem. A 1997, 101, 9618. 

    28. [28]

      Wu, H.-L.; Shibukawa, M.; Oguma, K. J. Chemom. 1998, 12, 1. 

    29. [29]

      Li, S.-F.; Wu, H.-L.; Yu, Y.-J.; Li, Y.-N.; Nie, J.-F.; Fu, H.-Y.; Yu, R.-Q. Talanta 2010, 81, 805.

    30. [30]

       

    31. [31]

      Wang, J.-Y.; Wu, H.-L.; Sun, Y.-M.; Gu, H.-W.; Liu, Z.; Liu, Y.-J.; Yu, R.-Q. J. Chromatogr. B 2014, 948-948, 32.

    32. [32]

       

    33. [33]

      Zhang, S.-R.; Wu, H.-L.; Chen, Y.; Zhang, X.-H.; Wang, J.-Y.; Li, Y.; Yu, R.-Q. Chemom. Intell. Lab. Syst. 2013, 121, 9.

    34. [34]

      Tu, J.-R.; Cai, W.-S.; Shao, X.-G. Analyst 2014, 139, 1016.

    35. [35]

      Tu, J.-R.; Cai, W.-S.; Shao, X.-G. J. Electroanal. Chem. 2014, 725, 25.

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    3. [3]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    4. [4]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    5. [5]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    6. [6]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    7. [7]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    8. [8]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    14. [14]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    15. [15]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(1643)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return