Citation: Zhao Qing, Qi Boyu, Wang Baojin, Chen Feiwu. Theoretical Investigation on Weak Interactions of HXeBr with Benzene and Its Derivatives[J]. Acta Chimica Sinica, ;2015, 74(3): 285-292. doi: 10.6023/A15100641 shu

Theoretical Investigation on Weak Interactions of HXeBr with Benzene and Its Derivatives

  • Corresponding author: Chen Feiwu, chenfeiwu@ustb.edu.cn
  • Received Date: 3 October 2015

    Fund Project: the National Natural Science Foundation of China 21173020, 21473008

Figures(7)

  • Geometries of complexes HXeBr…C6H5X (X=H, CH3, NH2, N(CH3)2, NHCH3, OH, OCH3, CN, F, Cl, Br, I, COOH, SO3H, CF3) and its monomers are optimized with MP2/aug-cc-pVDZ (aug-cc-pVDZ-PP for Xe and I). The aug-cc-pVDZ-PP is a small core pseudopotential basis set. It ignores 28 electrons for Xe and I atoms. Two types of weak interactions, π…H bond and bifurcated hydrogen bonds, are analyzed in detail. The effects of substituting group of the benzene ring on the weak interaction energies are investigated. Their effects on π…H bond are different from that on bifurcated hydrogen bonds. As for the complexes with π…H bond, electron withdrawing groups reduce the interaction energies while electron donating groups increase the interaction energies. However, for the complexes with bifurcated hydrogen bonds, electron withdrawing groups increase the interaction energies while electron-donating groups decrease the interaction energies. The effects of substituting groups on geometrical parameters of HXeBr are also analyzed. As for 14 complexes of HXeBr…C6H5X with bifurcated hydrogen bonds, it is found that their weak interaction energies have very good linear relationships with dipole moments of C6H5X, bond length changes of Xe—Br and H—Xe bonds, vibrational frequency changes of H—Xe bonds, and the sum of two interpenetration distances of Van der Waals surfaces of bromine and two hydrogen atoms which are connected to the bromine atom by hydrogen bonds. It is also found that the weak interaction energies of 14 complexes above have very good linear relationships with the sum of electron densities (ρ), the sum of ∇2ρ and the sum of electrostatic potentials at two critical points of bifurcated hydrogen bonds, and with the electron density, ∇2ρ and the electrostatic potential at the ring critical point which is inside a ring formed by the bifurcated hydrogen bonds and two carbon atoms of the benzene ring. As for the complexes with bifurcated hydrogen bonds, the weak interaction energies between the monomers can be understood approximately as dipole-dipole interaction.
  • 加载中
    1. [1]

      Klemperer, W. Science 1992, 257, 887.

    2. [2]

      Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 1997, 101, 4236. 

    3. [3]

      Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 1998, 102, 9925. 

    4. [4]

      Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.

    5. [5]

      Tarakeshwar, P.; Choi, H. S.; Kim, K. S. J. Am. Chem. Soc. 2001, 123, 3323. 

    6. [6]

      Grabowski, S. J.; Sokalski, W. A.; Leszczynski, J. J. Phys. Chem. A 2004, 108, 5823. 

    7. [7]

       

    8. [8]

       

    9. [9]

       

    10. [10]

      Bartlett, N. Proc. Chem. Soc. 1962, 218.

    11. [11]

      Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 102, 6423.

    12. [12]

      Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 2000, 406, 874.

    13. [13]

      Lignell, A.; Khriachtchev, L.; Pettersson, M.; Räsänen, M. J. Chem. Phys. 2003, 118, 11120.

    14. [14]

      McDowell, S. A. C. J. Chem. Phys. 2004, 120, 3630. 

    15. [15]

      McDowell, S. A. C. Chem. Phys. Lett. 2005, 406, 228. 

    16. [16]

      Yen, S.-Y.; Mou, C.-H.; Hu, W.-P. Chem. Phys. Lett. 2004, 383, 606.

    17. [17]

      Liu, X.-F.; Li, Q.-Z.; Li, R.; Li, W.-Z.; Cheng, J.-B. Spectrochim. Acta A 2011, 84, 68.

    18. [18]

      Lignell, A.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Phys. Chem. A 2008, 112, 5486. 

    19. [19]

      Tsuge, M.; Berski, S.; Stachowski, R.; Räsänen, M.; Latajka, Z.; Khriachtchev, L.J. Phys. Chem. A 2012, 116, 4510. 

    20. [20]

      Tsivion, E.; Räsänen, M.; Gerber, R. B. Phys. Chem. Chem. Phys. 2013, 15, 12610. 

    21. [21]

      Tsuge, M.; Berski, S.; Räsänen, M.; Latajka, Z.; Khriachtchev, L.J. Chem. Phys. 2014, 140, 044323.

    22. [22]

      Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.

    23. [23]

      Feller, D. J. Comp. Chem. 1996, 17, 1571.(b) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045. 

    24. [24]

      Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.

    25. [25]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo,C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian,Inc., Wallingford CT, 2009.

    26. [26]

      Lu, T.; Chen, F.-W. J. Comput. Chem. 2012, 33, 580.(b) Multiwfn website:http://Multiwfn.codeplex.com.

    27. [27]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics Modell. 1996, 14, 33. 

    28. [28]

      Bader, R. F. W. Chem. Rev. 1991, 91, 893. 

    29. [29]

      Bader, R. W. F. Acc. Chem. Res. 1985, 18, 9. 

    30. [30]

      Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990.

    31. [31]

      Lu, T.; Chen, F.-W. J. Theor. Comput. Chem. 2012, 11, 163.

    32. [32]

      Ammal, S. S. C.; Venuvanalingam, P. J. Chem. Phys. 1998, 109, 9820.

    33. [33]

    34. [34]

      Grimme, S. Angew. Chem., Int. Ed. 2008, 47, 3430. 

    35. [35]

      Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620. 

  • 加载中
    1. [1]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    2. [2]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    7. [7]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    8. [8]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    9. [9]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    16. [16]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    19. [19]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(0)
  • Abstract views(1082)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return