Citation: Zhao Qing, Qi Boyu, Wang Baojin, Chen Feiwu. Theoretical Investigation on Weak Interactions of HXeBr with Benzene and Its Derivatives[J]. Acta Chimica Sinica, ;2015, 74(3): 285-292. doi: 10.6023/A15100641 shu

Theoretical Investigation on Weak Interactions of HXeBr with Benzene and Its Derivatives

  • Corresponding author: Chen Feiwu, chenfeiwu@ustb.edu.cn
  • Received Date: 3 October 2015

    Fund Project: the National Natural Science Foundation of China 21173020, 21473008

Figures(7)

  • Geometries of complexes HXeBr…C6H5X (X=H, CH3, NH2, N(CH3)2, NHCH3, OH, OCH3, CN, F, Cl, Br, I, COOH, SO3H, CF3) and its monomers are optimized with MP2/aug-cc-pVDZ (aug-cc-pVDZ-PP for Xe and I). The aug-cc-pVDZ-PP is a small core pseudopotential basis set. It ignores 28 electrons for Xe and I atoms. Two types of weak interactions, π…H bond and bifurcated hydrogen bonds, are analyzed in detail. The effects of substituting group of the benzene ring on the weak interaction energies are investigated. Their effects on π…H bond are different from that on bifurcated hydrogen bonds. As for the complexes with π…H bond, electron withdrawing groups reduce the interaction energies while electron donating groups increase the interaction energies. However, for the complexes with bifurcated hydrogen bonds, electron withdrawing groups increase the interaction energies while electron-donating groups decrease the interaction energies. The effects of substituting groups on geometrical parameters of HXeBr are also analyzed. As for 14 complexes of HXeBr…C6H5X with bifurcated hydrogen bonds, it is found that their weak interaction energies have very good linear relationships with dipole moments of C6H5X, bond length changes of Xe—Br and H—Xe bonds, vibrational frequency changes of H—Xe bonds, and the sum of two interpenetration distances of Van der Waals surfaces of bromine and two hydrogen atoms which are connected to the bromine atom by hydrogen bonds. It is also found that the weak interaction energies of 14 complexes above have very good linear relationships with the sum of electron densities (ρ), the sum of ∇2ρ and the sum of electrostatic potentials at two critical points of bifurcated hydrogen bonds, and with the electron density, ∇2ρ and the electrostatic potential at the ring critical point which is inside a ring formed by the bifurcated hydrogen bonds and two carbon atoms of the benzene ring. As for the complexes with bifurcated hydrogen bonds, the weak interaction energies between the monomers can be understood approximately as dipole-dipole interaction.
  • 加载中
    1. [1]

      Klemperer, W. Science 1992, 257, 887.

    2. [2]

      Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 1997, 101, 4236. 

    3. [3]

      Rozas, I.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 1998, 102, 9925. 

    4. [4]

      Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253.

    5. [5]

      Tarakeshwar, P.; Choi, H. S.; Kim, K. S. J. Am. Chem. Soc. 2001, 123, 3323. 

    6. [6]

      Grabowski, S. J.; Sokalski, W. A.; Leszczynski, J. J. Phys. Chem. A 2004, 108, 5823. 

    7. [7]

       

    8. [8]

       

    9. [9]

       

    10. [10]

      Bartlett, N. Proc. Chem. Soc. 1962, 218.

    11. [11]

      Pettersson, M.; Lundell, J.; Räsänen, M. J. Chem. Phys. 1995, 102, 6423.

    12. [12]

      Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 2000, 406, 874.

    13. [13]

      Lignell, A.; Khriachtchev, L.; Pettersson, M.; Räsänen, M. J. Chem. Phys. 2003, 118, 11120.

    14. [14]

      McDowell, S. A. C. J. Chem. Phys. 2004, 120, 3630. 

    15. [15]

      McDowell, S. A. C. Chem. Phys. Lett. 2005, 406, 228. 

    16. [16]

      Yen, S.-Y.; Mou, C.-H.; Hu, W.-P. Chem. Phys. Lett. 2004, 383, 606.

    17. [17]

      Liu, X.-F.; Li, Q.-Z.; Li, R.; Li, W.-Z.; Cheng, J.-B. Spectrochim. Acta A 2011, 84, 68.

    18. [18]

      Lignell, A.; Lundell, J.; Khriachtchev, L.; Räsänen, M. J. Phys. Chem. A 2008, 112, 5486. 

    19. [19]

      Tsuge, M.; Berski, S.; Stachowski, R.; Räsänen, M.; Latajka, Z.; Khriachtchev, L.J. Phys. Chem. A 2012, 116, 4510. 

    20. [20]

      Tsivion, E.; Räsänen, M.; Gerber, R. B. Phys. Chem. Chem. Phys. 2013, 15, 12610. 

    21. [21]

      Tsuge, M.; Berski, S.; Räsänen, M.; Latajka, Z.; Khriachtchev, L.J. Chem. Phys. 2014, 140, 044323.

    22. [22]

      Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem. Phys. 2003, 119, 11113.

    23. [23]

      Feller, D. J. Comp. Chem. 1996, 17, 1571.(b) Schuchardt, K. L.; Didier, B. T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T. L. J. Chem. Inf. Model. 2007, 47, 1045. 

    24. [24]

      Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553.

    25. [25]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo,C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian,Inc., Wallingford CT, 2009.

    26. [26]

      Lu, T.; Chen, F.-W. J. Comput. Chem. 2012, 33, 580.(b) Multiwfn website:http://Multiwfn.codeplex.com.

    27. [27]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics Modell. 1996, 14, 33. 

    28. [28]

      Bader, R. F. W. Chem. Rev. 1991, 91, 893. 

    29. [29]

      Bader, R. W. F. Acc. Chem. Res. 1985, 18, 9. 

    30. [30]

      Bader, R. F. W. Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990.

    31. [31]

      Lu, T.; Chen, F.-W. J. Theor. Comput. Chem. 2012, 11, 163.

    32. [32]

      Ammal, S. S. C.; Venuvanalingam, P. J. Chem. Phys. 1998, 109, 9820.

    33. [33]

    34. [34]

      Grimme, S. Angew. Chem., Int. Ed. 2008, 47, 3430. 

    35. [35]

      Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620. 

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    4. [4]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    8. [8]

      Kun ZouYihang XiaoJinyu YangMingxuan Wu . Facile semisynthesis of histone H3 enables nucleosome probes for investigation of histone H3K79 modifications. Chinese Chemical Letters, 2024, 35(10): 109497-. doi: 10.1016/j.cclet.2024.109497

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    11. [11]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    12. [12]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    13. [13]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    14. [14]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    15. [15]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    16. [16]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    17. [17]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    18. [18]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    19. [19]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    20. [20]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

Metrics
  • PDF Downloads(0)
  • Abstract views(989)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return