Citation: Yang Lijun, Ma Junan. New Advances on Nucleophilic Phosphine-Triggered Annulation Reactions of Allenoates[J]. Acta Chimica Sinica, ;2015, 74(2): 130-148. doi: 10.6023/A15090617 shu

New Advances on Nucleophilic Phosphine-Triggered Annulation Reactions of Allenoates

  • Corresponding author: Ma Junan, majun_an68@tju.edu.cn
  • Received Date: 22 September 2015

    Fund Project: the National Basic Research Program of China 973 Program,No. 2014CB745100Tianjin Municipal Science & Technology Commission No. 14JCZDJC33400the National Natural Science Foundation of China Nos. 21225208, 21532008

Figures(52)

  • In the mid 1990s, Lu and co-workers reported the nucleophilic phosphine-triggered annulation reactions of allenoates with electron-deficient olefins or imines. As one of the most efficient and straightforward synthetic strategies for the construction of highly functionalized carbocycle or heterocycle structural motifs, the development and application of nucleophilic phosphine-triggered annulation of allenoates by using various nucleophilic phosphines and electron-deficient partners have attracted more and more interests of chemists over the past decades. Furthermore, the development of asymmetric phosphine-triggered annulation of allenoates cleaved a new way to the total synthesis of bioactive natural products and medicinally important substances. In addition, aldehydes and ketones were also employed into this reaction, leading to a wide range of O-fused heterocycles. This review focuses on the important developments concerning racemic and asymmetric annulation reactions of allenoates in the past two decades.
  • 加载中
    1. [1]

       

    2. [2]

      Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906. 

    3. [3]

      Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 34701. (b) Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Chem. Eur. J. 2008, 14, 4361.

    4. [4]

      Dudding, T.; Kwon, O.; Mercier, E. Org. Lett. 2006, 8, 3643. (b) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617.

    5. [5]

      Xu, Z.; Lu, X. Tetrahedron Lett. 1999, 40, 549.

    6. [6]

      Xu, Z.; Lu, X. Tetrahedron Lett. 1997, 38, 3461.

    7. [7]

      Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031. 

    8. [8]

      Du, Y.; Lu, X.; Yu, Y. J. Org. Chem. 2002, 67, 8901. 

    9. [9]

      Du, Y.; Lu, X. J. Org. Chem. 2003, 68, 6463. 

    10. [10]

      Pyne, S. G.; Schafer, K.; Skelton, B. W.; White, A. H. Chem. Commun. 1997, 2267. (b) Ung, A. T.; Schafer, K.; Lindsay, K. B.; Pyne, S. G.; Amornraksa, K.; Wouters, R.; Van der Linden, I.; Biesmans, I.; Lesage, A. S. J.; Skelton, B. W.; White, A. H. J. Org. Chem. 2002, 67, 227.

    11. [11]

      Pham, T. Q.; Pyne, S. G.; Skelton, B. W.; White, A. H. J. Org. Chem. 2005, 70, 6369. (b) Yong, S. R.; Williams, M. C.; Pyne, S. G.; Ung, A. T.; Skelton, B. W.; White, A. H.; Turner, P. Tetrahedron 2005, 61, 8120. 

    12. [12]

      Lu, X.; Lu, Z.; Zhang, X. Tetrahedron 2006, 62, 457.

    13. [13]

      Henry, C. E.; Kwon, O. Org. Lett. 2007, 9, 3069.

    14. [14]

      Lee, S. Y.; Fujiwara, Y.; Nishiguchi, A.; Kalek, M.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 4587. 

    15. [15]

      Guan, X.-Y.; Wei, Y.; Shi, M. Org. Lett. 2010, 12, 5024.

    16. [16]

      Zou, Y.-Q.; Li, C.; Rong, J.; Yan, H.; Chen, J.-R.; Xiao, W.-J. Synlett 2011, 1000.

    17. [17]

      Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Chem. Commun. 2011, 47, 1548. (b) Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M.Org. Lett. 2011, 13, 1142.

    18. [18]

      Gomez, C.; Gicquel, M.; Carry, J.-C.; Schio, L.; Retailleau, P.; Voituriez, A.; Marinetti, A. J. Org. Chem. 2013, 78, 1488. 

    19. [19]

    20. [20]

      Marco-Martinez, J.; Marcos, V.; Reboredo, S.; Filippone, S.; Martin, N. Angew. Chem., Int. Ed. 2013, 52, 5115. 

    21. [21]

      Kumar, K.; Kapoor, R.; Kapur, A.; Ishar, M. P. S. Org. Lett. 2000, 2, 2023. 

    22. [22]

       

    23. [23]

      Jones, R. A.; Krische, M. J. Org. Lett. 2009, 11, 1849. 

    24. [24]

      Zhu, G.; Chen, Z.; Jiang, Q.; Xiao, D.; Cao, P.; Zhang, X. J. Am. Chem. Soc. 1997, 119, 3836. 

    25. [25]

      Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426. 

    26. [26]

      Fujiwara, Y.; Fu, G. C. J. Am. Chem. Soc. 2011, 133, 12293. 

    27. [27]

      Steurer, M.; Jensen, K. L.; Worgull, D.; Jorgensen, K. A. Chem. Eur. J. 2012, 18, 76. 

    28. [28]

      Cowen, B. J.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 10988. 

    29. [29]

      Voituriez, A.; Panossian, A.; Fleury-Bregeot, N.; Retailleau, P.; Marinetti, A. J. Am. Chem. Soc. 2008, 130, 14030. 

    30. [30]

      Voituriez, A.; Panossian, A.; Fleury-Bregeot, N.; Retailleau, P.; Marinetti, A. Adv. Synth. Catal. 2009, 351, 1968. (b) Neel, M.; Gouin, J.; Voituriez, A.; Marinetti, A. Synthesis 2011, 2003. (c) Duvvuru, D.; Pinto, N.; Gomez, C.; Betzer, J.-F.; Retailleau, P.; Voituriez, A.; Marinetti, A. Adv. Synth. Catal. 2012, 354, 408. 

    31. [31]

      Pinto, N.; Neel, M.; Panossian, A.; Retailleau, P.; Frison, G.; Voituriez, A.; Marinetti, A. Chem. Eur. J. 2010, 16, 1033. 

    32. [32]

      Schuler, M.; Voituriez, A.; Marinetti, A. Tetrahedron: Asymmetry 2010, 21, 1569. (b) Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A. Chem. Eur. J. 2010, 16, 12541. (c) Pinto, N.; Retailleau, P.; Voituriez, A.; Marinetti, A. Chem. Commun. 2011, 47, 1015.

    33. [33]

      Xiao, H.; Chai, Z.; Zheng, C.-W.; Yang, Y.-Q.; Liu, W.; Zhang, J.-K.; Zhao, G. Angew. Chem., Int. Ed. 2010, 49, 4467. 

    34. [34]

      Han, X.; Wang, Y.; Zhong, F.; Lu, Y. J. Am. Chem. Soc. 2011, 133, 1726. 

    35. [35]

      Han, X.; Wang, S.-X.; Zhong, F.; Lu, Y. Synthesis 2011, 1859.(b) Zhao, Q.; Han, X.; Wei, Y.; Shi, M.; Lu, Y. Chem. Commun. 2012, 48, 970.

    36. [36]

      Zhang, X.-N.; Shi, M. ACS Catal. 2013, 3, 507.

    37. [37]

      Gicquel, M.; Zhang, Y.; Aillard, P.; Retailleau, P.; Voituriez, A.; Marinetti, A. Angew. Chem., Int. Ed. 2015, 54, 5470. 

    38. [38]

      Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632. 

    39. [39]

      Tran, Y. S.; Martin, T. J.; Kwon, O. Chem. Asian J. 2011, 6, 2101. 

    40. [40]

      Baskar, B.; Dakas, P.-Y.; Kumar, K. Org. Lett. 2011, 13, 1988.

    41. [41]

      Li, E.; Huang, Y.; Liang, L.; Xie, P. Org. Lett. 2013, 15, 3138.

    42. [42]

      Gicquel, M.; Gomez, C.; Retailleau, P.; Voituriez, A.; Marinetti, A. Org. Lett. 2013, 15, 4002.

    43. [43]

      Zhong, F.; Han, X.; Wang, Y.; Lu, Y.Chem. Sci. 2012, 3, 1231.

    44. [44]

      Xiao, H.; Chai, Z.; Cao, D.; Wang, H.; Chen, J.; Zhao, G. Org. Biomol. Chem. 2012, 10, 3195. 

    45. [45]

      Meng, W.; Zhao, H.-T.; Nie, J.; Zheng, Y.; Fu, A.; Ma, J.-A. Chem. Sci. 2012, 3, 3053.

    46. [46]

      Zheng, J.; Huang, Y.; Li, Z. Org. Lett. 2013, 15, 5064.

    47. [47]

      Li, E.; Huang, Y. Chem. Commun. 2014, 50, 948.

    48. [48]

      Li, E.; Jia, P.; Liang, L.; Huang, Y. ACS Catal. 2014, 4, 600. (b) Li, E.; Huang, Y. Chem. Eur. J. 2014, 20, 3520.

    49. [49]

      Zhu, X.-F.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 6276. 

    50. [50]

      Zhao, G.-L.; Shi, M. J. Org. Chem. 2005, 70, 9975. 

    51. [51]

      Tang, X.; Zhang, B.; He, Z.; Gao, R.; He, Z. Adv. Synth. Catal. 2007, 349, 2007. 

    52. [52]

      Zhang, B.; He, Z.; Xu, S.; Wu, G.; He, Z. Tetrahedron 2008, 64, 9471.

    53. [53]

      Wang, Y.-Q.; Zhang, Y.; Dong, H.; Zhang, J.; Zhao, J. Eur. J. Org. Chem. 2013, 3764.

    54. [54]

      Chen, X.-Y.; Lin, R.-C.; Ye, S. Chem. Commun. 2012, 48, 1317.

    55. [55]

      Yang, L.-J.; Wang, S.; Nie, J.; Li, S.; Ma, J.-A. Org. Lett. 2013, 15, 5214. (b) Yang, L.-J.; Li, S.; Wang, S.; Nie, J.; Ma, J.-A. J. Org. Chem. 2014, 79, 3547.

    56. [56]

      Jean, L.; Marinetti, A. Tetrahedron Lett. 2006, 47, 2141. 

    57. [57]

      Fleury-Bregeot, N.; Jean, L.; Retailleau, P.; Marinetti, A. Tetrahedron 2007, 63, 11920.

    58. [58]

    59. [59]

    60. [60]

      Scherer, A.; Gladysz, J. A. Tetrahedron Lett. 2006, 47, 6335. 

    61. [61]

      Fang, Y.-Q.; Jacobsen, E. N. J. Am. Chem. Soc. 2008, 130, 5660. 

    62. [62]

      Han, X.; Zhong, F.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2012, 51, 767. 

    63. [63]

      Henry, C. E.; Xu, Q.; Fan, Y.-C.; Martin, T. J.; Belding, L.; Dudding, T.; Kwon, O. J. Am. Chem. Soc. 2014, 136, 11890. 

    64. [64]

      Andrews, I. P.; Kwon, O. Chem. Sci. 2012, 3, 2510.

    65. [65]

      Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716. 

    66. [66]

      Tran, Y. S.; Kwon, O. Org. Lett. 2005, 7, 4289. (b) Villa,R. A.; Xu,Q.; Kwon, O. Org. Lett. 2012, 14, 4634.

    67. [67]

      Castellano, S.; Fiji, H. D. G.; Kinderman, S. S.; Watanabe, M.; Leon, P.; Tamanoi, F.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 5843. (b) Cruz, D.; Wang, Z.; Kibbie, J.; Modlin, R.; Kwon, O. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 6769. 

    68. [68]

      Chen, X.-Y.; Ye, S. Eur. J. Org. Chem. 2012, 5723.

    69. [69]

      Takizawa, S.; Arteaga, F. A.; Yoshida, Y.; Suzuki, M.; Sasai, H. Asian J. Org. Chem. 2014, 3, 412.

    70. [70]

      Wurz, R. P.; Fu,G. C. J. Am. Chem. Soc. 2005, 127, 12234. 

    71. [71]

      Xiao, H.; Chai, Z.; Wang, H.-F.; Wang, X.-W.; Cao, D.-D.; Liu, W.; Lu, Y.-P.; Yang, Y.-Q.; Zhao, G. Chem. Eur. J. 2011, 17, 10562. 

    72. [72]

      Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard III, W. A.; Guo, H.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337. 

    73. [73]

      Wang, D.; Lei, Y.; Wei, Y.; Shi, M. Chem. Eur. J. 2014, 20, 15325. 

    74. [74]

      Meng, X.; Huang, Y.; Chen, R. Org. Lett. 2009, 11, 137.

    75. [75]

      Meng, X.; Huang, Y.; Zhao, H.; Xie, P.; Ma, J.; Chen, R. Org. Lett. 2009, 11, 991.

    76. [76]

      Sun, Y.-W.; Guan, X.-Y.; Shi, M. Org. Lett. 2010, 12, 5664.

    77. [77]

      Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. Org. Lett. 2010, 12, 544.

    78. [78]

      Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. Chem. Eur. J. 2009, 15, 8698. 

    79. [79]

      Wang, T.; Ye, S. Org. Biomol. Chem. 2011, 9, 5260. 

    80. [80]

      Zhu, X.-F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 1387.

    81. [81]

      Zhu, X.-F.; Schaffner, A.-P.; Li, R. C.; Kwon, O. Org. Lett. 2005, 7, 2977.

    82. [82]

      Creech, G. S.; Kwon, O. Org. Lett. 2008, 10, 429.

    83. [83]

      Wang, T.; Ye, S. Org. Lett. 2010, 12, 4168.

    84. [84]

      Kumar, K.; Kapur, A.; Ishar, M. P. S. Org. Lett. 2000, 2, 787. 

    85. [85]

      Lu, Z.; Zheng, S.; Zhang, X.; Lu, X. Org. Lett. 2008, 10, 3267.

    86. [86]

      Zhang, Q.;Yang, L.; Tong, X. J. Am. Chem. Soc. 2010, 132, 2550. 

    87. [87]

      Gu, Y.; Hu, P.; Ni, C.; Tong, X. J. Am. Chem. Soc. 2015, 137, 6400. 

    88. [88]

      Han, X.; Yao, W.; Wang, T.; Tan, Y. R.; Yan, Z.; Kwiatkowski, J.; Lu, Y. Angew. Chem., Int. Ed. 2014, 53, 5643. 

    89. [89]

      Ziegler, D. T.; Riesgo, L.; Ikeda, T.; Fujiwara, Y.; Fu, G. C. Angew. Chem.,Int. Ed. 2014, 53, 13183. 

    90. [90]

      Kramer, S.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 3803. 

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    19. [19]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(3037)
  • HTML views(538)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return