Citation: Zhao Caibin, Wang Zhanling, Zhou Ke, Ge Hongguang, Zhang Qiang, Jin Lingxia, Wang Wenliang, Yin Shiwei. Theoretical Investigation on Photovoltaic Properties of BDT and DPP Copolymer as a Promising Organic Solar Cell[J]. Acta Chimica Sinica, ;2015, 74(3): 251-258. doi: 10.6023/A15090606 shu

Theoretical Investigation on Photovoltaic Properties of BDT and DPP Copolymer as a Promising Organic Solar Cell

  • Corresponding author: Zhao Caibin, zhaocb@snut.edu.cn
  • Received Date: 15 September 2015

    Fund Project: the National Natural Science Foundation of China 21373132the Doctor Research start foundation of Shaanxi University of Technology SLGKYQD2-13, SLGKYQD2-10, SLGQD14-10

Figures(6)

  • Designing and synthesizing novel polymer electron-donor materials of polymer-based solar cells (PSCs) with the high photovoltaic performance is an important and hot research field of organic electronics. In the current work, taking the 4,8-di(thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (DBDT) as the electron-rich unit and the 3,6-di(thiophen-2-yl)pyrrolo[3, 4-c]pyrrole-1,4(2H,5H)-dione (DPP) as the electron-deficient one, a new donor material (PDBDTDPP) of PSCs has been designed. Then, with the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as an electron acceptor, the geometries, electronic properties, optical absorption properties, intramolecular and intermolecular reorganization energies, exciton binding energies, charge transfer integrals, and the rates of exciton dissociation and charge recombination for PC61BM-DBDTDPPn=1,2,3,∞ systems have been theoretically investigated by means of density functional theory (DFT) calculations coupled with the incoherent Marcus-Hush charge transfer model and some extensive multidimensional visualization techniques. In addition, the linear regression analysis has been done to explore the relationship between the above properties and the repeating unit. Calculated results show that the designed donor polymer possesses a good planar geometry, the low-lying the highest occupied molecular orbital (HOMO) level, strong and wide optical absorption in ultraviolet-visible band, large exciton binding energy (1.365 eV), and the relatively small intramolecular reorganization energies companying with the exciton dissociation (0.152 eV) and charge recombination (0.314 eV) processes. Furthermore, our theoretical study also reveals that in the donor-acceptor surface, the exciton dissociation rate is as high as 1.073×1014 s-1, while the charge recombination rate is only 1.797×108 s-1. The former is as six orders of magnitude large as the latter, which denotes that there is quite high exciton dissociation efficiency in the studied donor-acceptor surface. In brief, our theoretical results clearly indicate that PDBDTDPP should be a very promising electron-donating material, and is worth of making further device research by experiments. In addition, this study also shows that theoretical investigations not only can promote a deeper understanding for the connection between the chemical structures and the optical/electronic properties of organic compounds, but also can provide some valuable references for the rational design of novel donor-acceptor systems.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924. 

    5. [5]

      Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Mater. 2001, 11, 15.

    6. [6]

      Jorgensen, M.; Norrman, K.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2008, 92, 686. 

    7. [7]

      Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58. 

    8. [8]

      Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533. 

    9. [9]

      Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91, 954. 

    10. [10]

      You, J. B.; Dou, L. T.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; Yang, Y. Nat. Commun. 2013, 4, 1446.

    11. [11]

      Li, N.; Baran, D.; Forberich, K.; Machui, F.; Ameri, T.; Turbiez, M.; Carrasco-Orozco, M.; Drees, M.; Facchetti, A.; Krebs, F. C.; Brabec, C. J. Energy Environ. Sci. 2013, 6, 3407. 

    12. [12]

      You, J. B.; Chen, C.-C.; Hong, Z. R.; Yoshimura, K.; Ohya, K.; Xu, R.; Ye, S. L.; Gao, J.; Li, G.; Yang, Y. Adv. Mater. 2013, 25, 3973.

    13. [13]

      Peet, J.; Senatore, M. L.; Heeger, A. J.; Bazan, G. C. Adv. Mater. 2009, 21, 1521. 

    14. [14]

      Scharber, M. C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789. 

    15. [15]

      Huo, L. J.; Hou, J. H.; Chen, H.-Y.; Zhang, S. Q.; Jiang, Y.; Chen, T. L.; Yang, Y. Macromolecules 2009, 42, 6564. 

    16. [16]

      Sista, P.; Nguyen, H.; Murphy, J. W.; Hao, J.; Dei, D. K.; Palaniappan, K.; Servello, J.; Kularatne, R. S.; Gnade, B. E.; Xue, B.; Dastoor, P. C. M.; Biewer, C.; Stefan, M. C. Macromolecules 2010, 43, 7875. 

    17. [17]

      Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G. J. Am. Chem. Soc. 2009, 131, 15586. 

    18. [18]

      Huo, L. J.; Zhang, S. Q.; Guo, X.; Xu, F.; Li, Y. F.; Hou, J. H. Angew. Chem., Int. Ed. 2011, 50, 9697. 

    19. [19]

      Zhang, M. J.; Guo, X.; Zhang, S. Q.; Hou, J. H. Adv. Mater. 2014, 26, 1118. 

    20. [20]

      Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2009, 131, 16616. 

    21. [21]

      Bronstein, H.; Chen, Z. Y.; Ashraf, R. S.; Zhang, W. M.; Du, J. P.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; Wienk, M. M.; Janssen, R. A. J.; Anthopoulos, T.; Sirringhaus, H.; Heeney, M.; McCulloch, I. J. Am. Chem. Soc. 2011, 133, 3272. 

    22. [22]

      Hendriks, K. H.; Heintges, G. H. L.; Gevaerts, V. S.; Wienk, M. M.; Janssen, R. A. J. Angew. Chem. Int. Ed. 2013, 52, 8341. 

    23. [23]

      Yi, Z. R.; Sun, X. N.; Zhao, Y.; Guo, Y. L.; Chen, X. G.; Qin, J. G.; Yu, G.; Liu, Y. Q. Chem. Mater. 2012, 24, 4350. 

    24. [24]

      Fabiano, E.; Sala, F. D.; Cingolani, R.; Weimer, M.; Görling, A. J. Phys. Chem. A 2005, 109, 3078. 

    25. [25]

      Sai, F.-C.; Chang, C.-C.; Liu, C.-L.; Chen, W.-C.; Jenekhe, S. A. Macromolecules 2005, 38, 1958. 

    26. [26]

      Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 2339. 

    27. [27]

      Yanai, T. Chem. Phys. Lett. 2004, 393, 51.

    28. [28]

      Jorge, R. E.; Jorge, S. S.; Suave, R. N. Chirality 2015, 27, 23. 

    29. [29]

      Vlček, A.; Záliš, S. Coord. Chem. Rev. 2007, 251, 258.

    30. [30]

      Franck, R. J. J. Phys. Chem. A 2013, 117, 4267. 

    31. [31]

      Jacquemin, D.; Perpète, E. A.; Vydrov, O. A.; Scuseria, G. E.; Carlo, A. J. Chem. Phys. 2007, 127, 094102.

    32. [32]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.

    33. [33]

      Sun, L.; Bai, F. Q.; Zhao, Z. X.; Zhang, H. X. Sol. Energy Mater. Sol. Cells 2011, 95, 1800. 

    34. [34]

      Lu, T.; Chen, F. W. J. Comp. Chem. 2012, 33, 580. 

    35. [35]

      Lu, T.; Chen, F. W. J. Mol. Graph. Model. 2012, 38, 314. 

    36. [36]

       

    37. [37]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian Inc., Wallingford, CT, 2010.

    38. [38]

      Gautam, P.; Maragani, R.; Misra, R. Tetrahedron. Lett. 2014, 55, 6827.

    39. [39]

      Demeter, D.; Rousseau, T.; Leriche, P.; Cauchy, T.; Po, R.; Roncali, J. Adv. Funct. Mater. 2011, 21, 4379. 

    40. [40]

      Turbiez, M.; Frère, P.; Allain, M.; Videlot, C.; Ackermann, J.; Roncali, J. Chem-Eur. J. 2005, 11, 3742.

    41. [41]

      Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532. 

    42. [42]

      Xu, Z.; Chen, L.-M.; Chen, M.-H.; Li, G.; Yang, Y. Appl. Phys. Lett. 2009, 95, 013301.

    43. [43]

      Zheng, L. P.; Zhou, Q. M.; Deng, X. Y.; Yuan, M.; Yu, G.; Cao, Y. J. Phys. Chem. B 2004, 108, 11921. 

    44. [44]

      Wang, X. M.; Guo, Y. L.; Xiao, Y.; Zhang, L.; Yu, G.; Liu, Y. Q. J. Mater. Chem. 2009, 19, 3258. 

    45. [45]

      Li, Y. Z.; Pullerits, T.; Zhao, M. Y.; Sun, M. T. J. Phys. Chem. C 2011, 115, 21865. 

    46. [46]

      Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J. Prog. Photovolt: Res. Appl. 2007, 15, 659. 

    47. [47]

      Zhen, C.-G.; Becker, U.; Kieffer, J. J. Phys. Chem. A 2009, 113, 9707. 

    48. [48]

      Nayak, P. K.; Periasamy, N. Org. Electron. 2009, 10, 1396.

    49. [49]

      Schwenn, P. E.; Burn, P. L.; Powell, B. J. Org. Electron. 2011, 12, 394. 

    50. [50]

      Shen, F. G.; Peng, A. D.; Chen, Y.; Dong, Y.; Jiang, Z. W.; Wang, Y. B.; Fu, H. B.; Yao, J. N. J. Phys. Chem. A 2008, 112, 2206. 

    51. [51]

      Akaike, K.; Kanai, K.; Yoshida, H.; Tsutsumi, J.; Nishi, T.; Sato, N.; Ouchi, Y.; Seki, K. J. Appl. Phys. 2008, 104, 023710. 

    52. [52]

      Guan, Z.-L.; Kim, J. B.; Wang, H.; Jaye, C.; Fischer, D. A.; Loo, Y.-L.; Kahn, A. Org. Electron. 2010, 11, 1779.

    53. [53]

      Kanai, K.; Akaike, K.; Koyasu, K.; Sakai, K.; Nishi, T.; Kamizuru, Y.; Nishi, T.; Ouchi, Y.; Seki, K. Appl. Phys. A: Mater. Sci. Process. 2009, 95, 309. 

    54. [54]

      Zang, D.-Y.; So, F. F.; Forrest, S. R. Appl. Phys. Lett. 1991, 59, 823. 

    55. [55]

      Brocks, G.; van den Brink, J.; Morpurgo, A. F. Phys. Rev. Lett. 2004, 93, 146405. 

    56. [56]

      Mossotti, O. F. Memorie Mat. Fis. Modena. 1985, 24, 49.

    57. [57]

      Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk M. M. Adv. Funct. Mater. 2003, 13, 43. 

    58. [58]

      Malagoli, M.; Brédas, J. L. Chem. Phys. Lett. 2000, 327, 13. 

    59. [59]

      Lemaur, V.; da Silva Filho, D. A.; Coropceanu, V.; Lehmann, M.; Geerts, Y.; Piris, J.; Debije, M. G.; van de Craats, A. M.; Senthilkumar, K.; Siebbeles, L. D. A.; Warman, J. M.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2004, 126, 3271. 

    60. [60]

      Lemaur, V.; Steel, M.; Beljonne, D.; Brédas, J.-L.; Cornil, J. J. Am. Chem. Soc. 2005, 127, 6077. 

    61. [61]

      Marcus, R. A. J. Chem. Phys. 1965, 43, 679. 

    62. [62]

      Imahori, H.; Tkachenko, N. V.; Vehmanen, V.; Tamaki, K.; Lemmetyinen, H.; Sakata, Y.; Fukuzumi, S. J. Phys. Chem. A 2001, 105, 1750. 

    63. [63]

      D'Souza, F.; Chitta, R.; Ohkubo, K.; Tasior, M.; Subbaiyan, N. K.; Zandler, M. E.; Rogacki, M. K.; Gryko, D. T.; Fukuzumi, S. J. Am. Chem. Soc. 2008, 130, 14263. 

    64. [64]

      Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Brédas, J.-L. Chem. Rev. 2007, 107, 926.

    65. [65]

      Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971.

    66. [66]

      Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599. 

    67. [67]

      Hush, N. S. J. Chem. Phys. 1958, 28, 962. 

    68. [68]

    69. [69]

    70. [70]

      Yang, X. D.; Li, Q. K.; Shuai, Z. G. Nanotechnology 2007, 18, 424029. 

    71. [71]

      Yang, X. D.; Wang, L. J.; Wang, C. L.; Long, W.; Shuai, Z. G. Chem. Mater. 2008, 20, 3205. 

    72. [72]

      Wen, S.-H.; Deng, W.-Q.; Han, K.-L. Phys. Chem. Chem. Phys. 2010, 12, 9267.

    73. [73]

      Nan, G. J.; Li, Z. S. Org. Electron. 2012, 13, 1229. 

    74. [74]

    75. [75]

      Yin, S. W.; Li, L. L.; Yang, Y. M.; Reimers, J. R. J. Phys. Chem. C 2012, 116, 14826. 

    76. [76]

      Liu, T.; Cheung, D. L.; Troisi, A. Phys. Chem. Chem. Phys. 2011, 13, 21461. 

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    14. [14]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(1285)
  • HTML views(297)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return