Citation: Zhang Zhenyua, Li Wanjun, Ye Kaiqi, Zhang Hongyu. Synthesis, Structure and Properties of a Novel Benzothiazole-based Diboron-Bridged π-Conjugated Ladder[J]. Acta Chimica Sinica, ;2015, 74(2): 179-184. doi: 10.6023/A15090603 shu

Synthesis, Structure and Properties of a Novel Benzothiazole-based Diboron-Bridged π-Conjugated Ladder

  • Corresponding author: Ye Kaiqi, hongyuzhang@jlu.edu.cn
  • Received Date: 14 September 2015

    Fund Project: the National Natural Science Foundation of China No. 51173067

Figures(9)

  • A novel diboron-bridged ladder-type molecule with extended π-conjugated skeleton has been designed and synthesized. Single crystal of the compound has been grown by the method of vacuum sublimation and the molecular structure determined by X-ray diffraction analysis demonstrate that this ladder-type molecule has a seven-ring fused skeleton, which is almost coplanar. And the two mesityl groups coordinated to each boron atom can effectively keep the luminescent units apart. No π-π interaction can be observed between the two extended π-conjugated planes. In the packing structures, we cannot find the intramolecular hydrogen bond, C-H…π interaction and other weak interaction. Based on UV-vis absorption and fluorescence emission spectra, the longest absorption band is peaked at 372 nm in dichloromethane solution and the emission band is at 544 nm which has a large stokes shift of 8499 cm-1. In the solid state, the compound shows yellow fluorescence with emission peak at 582 nm. The compound in condensed phase displays only slightly red shifted emission spectra and almost the same fluorescence quantum yield compared to that in dispersed phase, which is attributed to the bulky side groups on the boron atoms. The compound possesses a very high melting point (Tm=352℃) and decomposition temperature (Td5=360℃) due to the rigid π-conjugated plane that indicates its good thermal stability. The compound has two pairs of reversible reduction peaks and an irreversible oxidation peak which are similar to the reported four-coordinate compounds. The cyclic voltammogram curves indicate boron chelation can greatly lower the lowest unoccupied molecular orbital (LUMO). Thus, it makes cathodic reductions easier and thereby endows the π-conjugated ladder with enhanced electron-accepting nature. The electrochemical property suggests that the compound is suitable as an electron-transporting layer in organic light-emitting diode (OLED) devices. To obtain a deeper insight into the electronic structure and energy levels of the π-conjugated skeleton, density functional theory (DFT) calculations were performed. The LUMOs are delocalized on the entire seven-ring π-conjugated ladder while the central benzene ring and the mesityl chelated with the boron atom make a main contribution to the HOMOs. The general trend of the calculated HOMO/LUMO levels and energy gaps are basically consistent with the electrochemical and the photophysical data. Therefore, we fabricated OLEDs devices using the molecule as emitter and/or electron-transporting layers, which showed good EL performance.
  • 加载中
    1. [1]

      Kawaguchi, K.; Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 5119. (b) Anthony, J. E. Chem. Rev. 2006, 106, 5028. (c) Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891. (d) Xiao, K.; Liu, Y.; Qi, T.; Zhang, W.; Wang, F.; Gao, J.; Qiu, W.; Ma, Y.; Cui, G.; Chen, S.; Zhan, X.; Yu, G.; Qin, J.; Hu, W.; Zhu, D. J. Am. Chem. Soc. 2005, 127, 13281. (e) Fukazawa, A.; Yamaguchi, S. Chemistry-An Asian Journal 2009, 4, 1386. 

    2. [2]

    3. [3]

      Rao, Y.-L.; Wang, S. Inorg. Chem. 2011, 50, 12263. (b) Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416. (c) Zhang, H.; Huo, C.; Ye, K.; Zhang, P.; Tian, W.; Wang, Y. Inorg. Chem. 2006, 45, 2788. (d) Zhang, H.; Huo, C.; Zhang, J.; Zhang, P.; Tian, W.; Wang, Y. Chem. Commun. 2006, 281. (e) Zhang, Z.; Yao, D.; Zhao, S.; Gao, H.; Fan, Y.; Su, Z.; Zhang, H.; Wang, Y. Dalton Trans. 2010, 39, 5123. (f) Chen, H. Y.; Chi, Y.; Liu, C. S.; Yu, J. K.; Cheng, Y. M.; Chen, K. S.; Chou, P. T.; Peng, S. M.; Lee, G. H.; Carty, A. J.; Yeh, S. J.; Chen, C. T. Adv. Funct. Mater. 2005, 15, 567. (g) Liu, Q. D.; Mudadu, M. S.; Thummel, R.; Tao, Y.; Wang, S. Adv. Funct. Mater. 2005, 15, 143.

    4. [4]

      Kubo, Y.; Watanabe, K.; Nishiyabu, R.; Hata, R.; Murakami, A.; Shoda, T.; Ota, H. Org. Lett. 2011, 13, 4574. (b) Chen, J. J.; Conron, S. M.; Erwin, P.; Dimitriou, M.; McAlahney, K.; Thompson, M. E. ACS Appl. Mater. 2015, 7, 662. (c) Yoshii, R.; Yamane, H.; Nagai, A.; Tanaka, K.; Taka, H.; Kita, H.; Chujo, Y. Macromolecules 2014, 47, 2316. (d) Min, J.; Ameri, T.; Gresser, R.; Lorenz-Rothe, M.; Baran, D.; Troeger, A.; Sgobba, V.; Leo, K.; Riede, M.; Guldi, D. M.; Brabec, C. J. ACS Appl. Mater. 2013, 5, 5609.

    5. [5]

      Wang, L.; Zhang, Z.; Cheng, X.; Ye, K.; Li, F.; Wang, Y.; Zhang, H. J. Mater. Chem. C 2015, 3, 499.

    6. [6]

      Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130. (b) Madhu, S.; Ravikanth, M. Inorg. Chem. 2012, 51, 4285. (c) Lifschitz, A. M.; Shade, C. M.; Spokoyny, A. M.; Mendez-Arroyo, J.; Stern, C. L.; Sarjeant, A. A.; Mirkin, C. A. Inorg. Chem. 2013, 52, 5484. (d) Sarkar, S. K.; Mukherjee, S.; Thilagar, P. Inorg. Chem. 2014, 53, 2343. (e) Tian, M.-Z.; Feng, F.; Meng, S.-M.; Yuan, Y.-H. Chinese Chem. Lett. 2009, 20, 326. 

    7. [7]

      Cui, Y.; Liu, Q.-D.; Bai, D.-R.; Jia, W.-L.; Tao, Y.; Wang, S. Inorg. Chem. 2005, 44, 601. (b) Zhang, Z.; Zhang, H.; Jiao, C.; Ye, K.; Zhang, H.; Zhang, J.; Wang, Y. Inorg. Chem. 2015, 54, 2652.

    8. [8]

       

    9. [9]

      Son, H.-J.; Han, W.-S.; Wee, K.-R.; Chun, J.-Y.; Choi, K.-B.; Han, S. J.; Kwon, S.-N.; Ko, J.; Lee, C.; Kang, S. O. Eur. J. Inorg. Chem. 2009, 2009, 1503. (b) Job, A.; Wakamiya, A.; Kehr, G.; Erker, G.; Yamaguchi, S. Org. Lett. 2010, 12, 5470. (c) Matsuo, K.; Saito, S.; Yamaguchi, S. J. Am. Chem. Soc. 2014, 136, 12580. 

    10. [10]

      Li, D.; Zhang, Z.; Zhao, S.; Wang, Y.; Zhang, H. Dalton Trans. 2011, 40, 1279. (b) Li, D.; Wang, K.; Huang, S.; Qu, S.; Liu, X.; Zhu, Q.; Zhang, H.; Wang, Y. J. Mater. Chem. 2011, 21, 15298. (c) Li, D.; Yuan, Y.; Bi, H.; Yao, D.; Zhao, X.; Tian, W.; Wang, Y.; Zhang, H. Inorg. Chem. 2011, 50, 4825. (d) Zhang, Z.; Bi, H.; Zhang, Y.; Yao, D.; Gao, H.; Fan, Y.; Zhang, H.; Wang, Y.; Wang, Y.; Chen, Z.; Ma, D. Inorg. Chem. 2009, 48, 7230.

    11. [11]

      Iida, A.; Yamaguchi, S. J. Am. Chem. Soc. 2011, 133, 6952. (b) Fukazawa, A.; Yamaguchi, E.; Ito, E.; Yamada, H.; Wang, J.; Irle, S.; Yamaguchi, S. Organometallics 2011, 30, 3870. 

    12. [12]

    13. [13]

      Yamaguchi, E.; Wang, C.; Fukazawa, A.; Taki, M.; Sato, Y.; Sasaki, T.; Ueda, M.; Sasaki, N.; Higashiyama, T.; Yamaguchi, S. Angew. Chem. Int. Ed. 2015, 54, 4539. (b) Zhang, D.; Wen, Y.; Xiao, Y.; Yu, G.; Liu, Y.; Qian, X. Chem. Commun. 2008, 4777. (c) Hu, R.; Gomez-Duran, C. F. A.; Lam, J. W. Y.; Belmonte-Vazquez, J. L.; Deng, C.; Chen, S.; Ye, R.; Pena-Cabrera, E.; Zhong, Y.; Wong, K. S.; Tang, B. Z. Chem. Commun. 2012, 48, 10099. (d) Mao, M.; Xiao, S.; Li, J.; Zou, Y.; Zhang, R.; Pan, J.; Dan, F.; Zou, K.; Yi, T. Tetrahedron 2012, 68, 5037. 

    14. [14]

      SHELXTL, Version 5.1; Siemens Industrial Automation, Inc. 1997. (b) Sheldrick, G. M., SHELXS-97, Program for Crystal Structure Solution, University of Gttingen, Gttingen, 1997.

    15. [15]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02, Gaussian, Inc., Pittsburgh, PA, 2003.

    16. [16]

      Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997. 

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    6. [6]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    9. [9]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    10. [10]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    11. [11]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    14. [14]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    15. [15]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(0)
  • Abstract views(786)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return