Citation: Huang Gang, Chen Yuzhen, Jiang Hailong. Metal-Organic Frameworks for Catalysis[J]. Acta Chimica Sinica, ;2015, 74(2): 113-129. doi: 10.6023/A15080547 shu

Metal-Organic Frameworks for Catalysis

  • Corresponding author: Jiang Hailong, jianglab@ustc.edu.cn
  • Received Date: 17 August 2015

    Fund Project: the Recruitment Program of Global Youth Experts and the Fundamental Research Funds for the Central Universities No. WK2060190026the Natural Science Foundation of Anhui Province No. 1408085MB23the National Natural Science Foundation of China Nos. 21371162, 51301159the 973 Program No. 2014CB931803

Figures(20)

  • Emerging as a relatively new class of porous materials, metal-organic frameworks (MOFs), possessing diversified, designable and tailorable structures as well as ultrahigh surface area, have captured broad research interest and shown potential applications in many fields in recent years. In particular, MOFs have attracted intensive attention in catalysis. In the first two parts of this review, according to the origin of active sites, for examples, coordinatively unsaturated metal centers, functional organic linkers, functional sites chemically grafted onto the framework, as well as metal complexes or metal nanoparticles (MNPs) encapsulated inside the MOFs, etc., we have summarized the recent progress in heterogeneous catalysis over MOFs and their composites in recent several years. In addition, the MOF-based photocatalysis and electrocatalysis have also been briefly introduced in the subsequent two parts. Finally, the further development and challenge in MOF catalysis are discussed.
  • 加载中
    1. [1]

      Yaghi, O. M.; Li, G.; Li, H. Nature 1995, 378, 703. 

    2. [2]

      Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629. 

    3. [3]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217. 

    4. [4]

      Hill, R. J.; Long, D.-L.; Champness, N. R.; Hubberstey, P.; Schrder, M. Acc. Chem. Res. 2005, 38, 335. 

    5. [5]

       

    6. [6]

       

    7. [7]

       

    8. [8]

       

    9. [9]

       

    10. [10]

      Wang, W.; Yuan, Y.; Sun, F.-X.; Zhu, G.-S. Chin. Chem. Lett. 2014, 25, 1407.

    11. [11]

      Wen, R.-M.; Han, S.-D.; Wang, H.; Zhang, Y.-H. Chin. Chem. Lett. 2014, 25, 854.

    12. [12]

      Zhao, J.-A.; Chen, S.-F.; Zhao, D.-D.; Guo, Y.; Peng, K.; Hu, J.-Y. Chin. Chem. Lett. 2013, 24, 483.

    13. [13]

      Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213. 

    14. [14]

      Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. 

    15. [15]

      Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.

    16. [16]

      Zhou, H.-C.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415. 

    17. [17]

      Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev. 2013, 113, 734. 

    18. [18]

      Ma, S.; Zhou, H.-C. Chem. Commun. 2010, 46, 44.

    19. [19]

      Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012, 112, 724. 

    20. [20]

      Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev. 2012, 112, 782. 

    21. [21]

      Nugent, P.; Belmabkhout, Y.; Burd, S. D.; Cairns, A. J.; Luebke, R.; Forrest, K.; Pham, T.; Ma, S.; Space, B.; Wojtas, L.; Eddaoudi, M.; Zaworotko, M. J. Nature 2013, 495, 80. 

    22. [22]

      Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869.

    23. [23]

      He, Y.; Zhou, W.; Qian, G.; Chen, B. Chem. Soc. Rev. 2014, 43, 5657. 

    24. [24]

      Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. 

    25. [25]

      Corma, A.; García, H.; Llabrés i Xamena, F. X. Chem. Rev. 2010, 110, 4606. 

    26. [26]

      Jiang, H.-L.; Xu, Q. Chem. Commun. 2011, 47, 3351.

    27. [27]

      Gascon, J.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X. ACS Catal. 2014, 4, 361. 

    28. [28]

      Zhang, T.; Lin, W. Chem. Soc. Rev. 2014, 43, 5982. 

    29. [29]

      Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y. Chem. Soc. Rev. 2014, 43, 6011.

    30. [30]

      Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Eur. J. 2010, 16, 8530. 

    31. [31]

      Chen, B.; Xiang, S.; Qian, G. Acc. Chem. Res. 2010, 43, 1115. 

    32. [32]

      Takashima, Y.; Martinez, V. M.; Furukawa, S.; Kondo, M.; Shimomura, S.; Uehara, H.; Nakahama, M.; Sugimoto, K.; Kitagawa, S. Nat. Commun. 2011, 2, 168.

    33. [33]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105. 

    34. [34]

      Lin, R.-B.; Li, F.; Liu, S.-Y.; Qi, X.-L.; Zhang, J.-P.; Chen, X.-M. Angew. Chem., Int. Ed. 2013, 52, 13429.

    35. [35]

      Hu, Z.; Deibert, B. J.; Li, J. Chem. Soc. Rev. 2014, 43, 5815. 

    36. [36]

      Zhang, M.; Feng, G.; Song, Z.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D.; Tan, T. T. Y.; Guo, Z.; Hu, Z.; Tang, B. Z.; Liu, B.; Zhao, D. J. Am. Chem. Soc. 2014, 136, 7241. 

    37. [37]

      An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soc. 2009, 131, 8376. 

    38. [38]

      Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.

    39. [39]

      Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. Chem. Soc. Rev. 2014, 43, 5913. 

    40. [40]

      Mallick, A.; Garai, B.; Díaz, D. D.; Banerjee, R. Angew. Chem., Int. Ed. 2013, 52, 13755. 

    41. [41]

      Kitagawa, H. Nat. Chem. 2009, 1, 689.

    42. [42]

      Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem., Int. Ed. 2009, 48, 7502. 

    43. [43]

      Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M. J. Am. Chem. Soc. 2015, 137, 7810. 

    44. [44]

      Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315. 

    45. [45]

      Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Commun. 2012, 48, 11275.

    46. [46]

      Chui, S. S.-Y.; Lo, S. M.-F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148. 

    47. [47]

      Schlichte, K.; Kratzke, T.; Kaskel, S. Microporous Mesoporous Mater. 2004, 73, 81. 

    48. [48]

      Alaerts, L.; Séguin, E.; Poelman, H.; Thibault-Starzyk, F.; Jacobs, P. A.; De Vos, D. E. Chem. Eur. J. 2006, 12, 7353. 

    49. [49]

      Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040.

    50. [50]

      Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Chem. Commun. 2008, 4192.

    51. [51]

      Kim, J.; Bhattacharjee, S.; Jeong, K.-E.; Jeong, S.-Y.; Ahn, W.-S. Chem. Commun. 2009, 3904.

    52. [52]

      Jiang, Z.-R.; Wang, H.; Hu, Y.; Lu, J.; Jiang, H.-L. ChemSusChem 2015, 8, 878.

    53. [53]

      Akiyama, G.; Matsuda, R.; Sato, H.; Takata, M.; Kitagawa, S. Adv. Mater. 2011, 23, 3294.

    54. [54]

      Zhou, Y.-X.; Chen, Y.-Z.; Hu, Y.; Huang, G.; Yu, S.-H.; Jiang, H.-L. Chem. Eur. J. 2014, 20, 14976.

    55. [55]

      Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F. J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132, 14382. 

    56. [56]

       

    57. [57]

      Valvekens, P.; Bloch, E. D.; Long, J. R.; Ameloot, R.; De Vos, D. E. Catal. Today 2015, 246, 55. 

    58. [58]

      Feng, D.; Gu, Z.-Y.; Li J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem., Int. Ed. 2012, 51, 10307.

    59. [59]

      Vermoortele, F.; Ameloot, R.; Vimont, A.; Serre, C.; De Vos, D. Chem. Commun. 2011, 47, 1521.

    60. [60]

       

    61. [61]

      Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K. J. Am. Chem. Soc. 2009, 131, 7524. 

    62. [62]

      Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. 

    63. [63]

      Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248. 

    64. [64]

      Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.

    65. [65]

       

    66. [66]

      Alkordi, M. H.; Liu, Y.; Larsen, R. W.; Eubank, J. F.; Eddaoudi, M. J. Am. Chem. Soc. 2008, 130, 12639. 

    67. [67]

      Li, B.; Zhang, Y.; Ma, D.; Ma, T.; Shi, Z.; Ma, S. J. Am. Chem. Soc. 2014, 136, 1202. 

    68. [68]

      Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. 2012, 41, 5262. 

    69. [69]

      Moon, H. R.; Lim, D.-W.; Suh, M. P. Chem. Soc. Rev. 2013, 42, 1807. 

    70. [70]

      Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Tendeloo, G. V.; Fischer, R. A. Eur. J. Inorg. Chem. 2010, 3701.

    71. [71]

      Hermes, S.; Schrter, M.-K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Angew. Chem., Int. Ed. 2005, 44, 6237. 

    72. [72]

      Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem. Eur. J. 2008, 14, 8456. 

    73. [73]

      Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H. Angew. Chem., Int. Ed. 2010, 49, 4054. 

    74. [74]

      Long, J.; Liu, H.; Wu, S.; Liao, S.; Li, Y. ACS Catal. 2013, 3, 647.

    75. [75]

      Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Rnnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2012, 134, 13926. 

    76. [76]

      Schrder, F.; Esken, D.; Cokoja, M.; van den Berg, M. W. E.; Lebedev, O. I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.-H.; Chaudret, B.; Fischer, R. A. J. Am. Chem. Soc. 2008, 130, 6119. 

    77. [77]

      Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 11302. 

    78. [78]

       

    79. [79]

      Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 1304. 

    80. [80]

      Gu, X.; Lu, Z.-H.; Jiang, H.-L.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11822. 

    81. [81]

      Guo, Z.; Xiao, C.; Maligal-Ganesh, R. V.; Zhou, L.; Goh, T. W.; Li, X.; Tesfagaber, D.; Thiel, A.; Huang, W. ACS Catal. 2014, 4, 1340.

    82. [82]

      Yang, Q.; Chen, Y.-Z.; Wang, Z. U.; Xu, Q.; Jiang, H.-L. Chem. Commun. 2015, 51, 10419.

    83. [83]

      Chen, Y.-Z.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Small 2015, 11, 71.

    84. [84]

      Chen, Y.-Z.; Liang, L.; Yang, Q.; Hong, M.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Mater. Horiz. 2015, 2, 606.

    85. [85]

      Zhang, H.-X.; Liu, M.; Bu, X.; Zhang, J. Sci. Rep. 2014, 4, 3923.

    86. [86]

      Chen, Y.-Z.; Zhou, Y.-X.; Wang, H.; Lu, J.; Uchida, T.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. ACS Catal. 2015, 5, 2062.

    87. [87]

      Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; Duchene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.

    88. [88]

      Kuo, C.-H.; Tang, Y.; Chou, L.-Y.; Sneed, B. T., Brodsky, C. N.; Zhao, Z.; Tsung, C.-K. J. Am. Chem. Soc. 2012, 134, 14345. 

    89. [89]

      Yang, Y.; Wang, F.; Yang, Q.; Hu, Y.; Yang, H.; Chen, Y.-Z.; Liu, H.; Zhang, G.; Lu, J.; Jiang, H.-L.; Xu, H. ACS Appl. Mater. Interfaces 2014, 6, 18163. 

    90. [90]

      Zhao, H.; Song, H.; Xu, L.; Chou, L. Appl. Catal. A: Gen. 2013, 456, 188. 

    91. [91]

      Zhou, Y.-X.; Chen, Y.-Z.; Cao, L.; Lu, J.; Jiang, H.-L. Chem. Commun. 2015, 51, 8292.

    92. [92]

       

    93. [93]

      Tachikawa, T.; Choi, J. R.; Fujitsuka, M.; Majima, T. J. Phys. Chem. C 2008, 112, 14090.

    94. [94]

      Wang, C.-C.; Li, J.-R.; Lv, X.-L.; Zhang, Y.-Q.; Guo, G. Energy Environ. Sci. 2014, 7, 2831. 

    95. [95]

      Du, J.-J.; Yuan, Y.-P.; Sun, J.-X.; Peng, F.-M.; Jiang, X.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Hazard. Mater. 2011, 190, 945.

    96. [96]

      Yang, H.; He, X.-W.; Wang, F.; Kang, Y.; Zhang, J. J. Mater. Chem. 2012, 22, 21849. 

    97. [97]

      Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2011, 133, 13445. 

    98. [98]

      Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Chem. Commun. 2012, 48, 11656.

    99. [99]

      Kataoka, Y.; Sato, K.; Miyazaki, Y.; Masuda, K.; Tanaka, H.; Naito, S.; Mori, W. Energy Environ. Sci. 2009, 2, 397.

    100. [100]

       

    101. [101]

      Wang, C.; deKrafft, K. E.; Lin, W. J. Am. Chem. Soc. 2012, 134, 7211. 

    102. [102]

      He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y. Chem. Commun. 2013, 49, 6761.

    103. [103]

      Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. Angew. Chem., Int. Ed. 2012, 51, 3364. 

    104. [104]

      Li, R.; Deng, M.; Wang, H.; Wang, X.; Hu, Y.; Jiang, H.-L.; Jiang, J.; Zhang, Q.; Xie, Y.; Xiong, Y. Adv. Mater. 2014, 26, 4783.

    105. [105]

      Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2015, 137, 13440.

    106. [106]

      Chen, Y.-Z.; Wang, C.; Wu, Z.-Y.; Xiong, Y.; Xu, Q.; Yu, S.-H.; Jiang, H.-L. Adv. Mater. 2015, 27, 5010.

    107. [107]

      Zhang, W.; Wu, Z.-Y.; Jiang, H.-L.; Yu, S.-H. J. Am. Chem. Soc. 2014, 136, 14385.

    108. [108]

      Qin, J.-S.; Du, D.-Y.; Guan, W.; Bo, X.-J.; Li, Y.-F.; Guo, L.-P.; Su, Z.-M.; Wang, Y.-Y.; Lan, Y.-Q.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 7169.

    109. [109]

      Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925. 

    110. [110]

      Jiang, H.-L.; Liu, B.; Lan, Y.-Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. J. Am. Chem. Soc. 2011, 133, 11854. 

    111. [111]

      Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. J. Am. Chem. Soc. 2015, 137, 1572. 

    112. [112]

      Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 17388. 

    113. [113]

      Cao, X.; Zheng, B.; Rui, X.; Shi, W.; Yan, Q.; Zhang, H. Angew. Chem., Int. Ed. 2014, 126, 1428. 

    114. [114]

      Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. 

    115. [115]

      Ranocchiari, M.; van Bokhoven, J. A. Phys. Chem. Chem. Phys. 2011, 13, 6388. 

    116. [116]

      Valvekens, P.; Vermoortele, F.; De Vos, D. Catal. Sci. Technol. 2013, 3, 1435.

    117. [117]

      Song, Y.; Li, X.; Sun, L.; Wang, L. RSC Adv. 2015, 5, 7267.

    118. [118]

      Wang, J.-L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630.

    119. [119]

      Morozan, A.; Jaouen, F. Energy Environ. Sci. 2012, 5, 9269.

    120. [120]

      Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Energy Environ. Sci. 2015, 8, 1837.

    121. [121]

      Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C. J. Am. Chem. Soc. 2014, 136, 17714.

    122. [122]

      Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C. J. Am. Chem. Soc. 2013, 135, 17105. 

    123. [123]

      Jiang, H.-L.; Feng, D.; Wang, K.; Gu, Z.-Y.; Wei, Z.; Chen, Y.-P.; Zhou, H.-C. J. Am. Chem. Soc. 2013, 135, 13934.

    124. [124]

      Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 10294. 

    125. [125]

      Zhang, W.; Hu, Y.; Ge, J.; Jiang, H.-L.; Yu, S.-H. J. Am. Chem. Soc. 2014, 136, 16978.

  • 加载中
    1. [1]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(4128)
  • HTML views(1294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return