Citation: LIN Shun-Jia, SUN Hong-Juan, PENG Tong-Jiang, LIU Bo. Structure Change of Quaternary Alkylammonium-Graphite Oxide Intercalation Composite[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2333-2338. doi: 10.3969/j.issn.1001-4861.2013.00.383 shu

Structure Change of Quaternary Alkylammonium-Graphite Oxide Intercalation Composite

  • Received Date: 14 May 2013
    Available Online: 27 June 2013

    Fund Project: 国家自然科学基金(No.41272051) (No.41272051)西南科技大学博士基金(No.11ZX7135) (No.11ZX7135)西南科技大学研究生创新基金(13ycjj49)资助项目。 (13ycjj49)

  • The graphite oxide (GO) samples were prepared from flake graphite via modified Hummers method. Aseries of quaternary alkylammonium-graphite oxide intercalation composites (CnTAB/GO) were synthesized by changing the alkyl chain length and surfactant concentration, respectively. The structure and intercalated amount of CnTAB for intercalation composites were characterized by using XRDand elemental analysis. The results suggest that the interlayer spacing of CnTAB/GO composites increases with the increase of alkyl chain length or surfactant concentration. It is also found that the experimental data obtained from surfactants in GO spacing have been fitted well into the Modified Langmuir adsorption isotherm equations,indicating that the CnTAB molecules are adsorbed on the surface of GO within a monomolecular layer. The result of elemental analysis also suggests that surfactant is intercalated into GO spacing via electrovalent and hydrophobic interaction. Finally, the arrangement models of the surfactant in the layer of GO include lateral monolayer, lateral bilayer, paraffin-type monolayer and vertical monolayer.
  • 加载中
    1. [1]

      [1] Stankovieh S, Dikin D A, Dommett H B. Nature, 2006,442 (7100):282-286

    2. [2]

      [2] Wei T, Luo G L, Fan Z J, et al. Carbon, 2009,47:2296-2299

    3. [3]

      [3] Ramanathan T, Abdala A A, Stankovich S, et al. Nat. Nan otechnol., 2008,3:327-331

    4. [4]

      [4] Liang J J, Xu Y F, Huang Y, et al. Phys. Chem. C, 2009, 113:9921-9927

    5. [5]

      [5] Matsuo Y, Watanabe K, Fukutsuka T, et al. Carbon, 2003, 41:1545-1550

    6. [6]

      [6] WU Ping-Xiao(吴平霄), LI Rong(李荣), DANG Zhi(党志). J. South China University of Technology(Huanan Ligong Daxue Xuebao), 2006,34(5):15-19

    7. [7]

      [7] Huang Y, Ma X Y, Liang G Z, et al. Polymer, 2008,49: 2085-2094

    8. [8]

      [8] Cao Y W, Feng J C, Wu P Y. Carbon, 2010,48(5):1683-1685

    9. [9]

      [9] Liang Y, Wu D, Feng X, et al. Adv. Mater., 2009,21:1679-1683

    10. [10]

      [10]HAN Zhi-Dong(韩志东), WANG Jian-Qi(王建祺). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,5(19):459-461

    11. [11]

      [11]Matsuo Y, Niwa T, Sugie Y. Carbon, 1999,37:897-901

    12. [12]

      [12]Hummers Jr W S, Offeman R E. J. Am. Chem. Soc., 1958,80(6):1339-1339

    13. [13]

      [13]YANG Yong-Hiu(杨勇辉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(11): 2083-2090

    14. [14]

      [14]He H Y, Klinowski J, Forster M, et al. Chem. Phys. Lett., 1998,287:53-56

    15. [15]

      [15]Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007, 45:1558-1565

    16. [16]

      [16]Schniepp H C, Li J L, McAllister M J, et al. J. Phys. Chem. B, 2006,110(17):8535-8537

    17. [17]

      [17]LÜXian-Jun(吕宪俊), CHEN Ping(陈平). J. Chinese Ceram. Soc.(Guisuanyan Xuebao), 2011,39(10):1553-1558

    18. [18]

      [18]CHEN Bao-Liang(陈宝梁), MAO Jie-Fei(毛洁菲), LÜShao-Fang(吕少芳). Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2009,30(9):1830-1834

    19. [19]

      [19]Boyd S A, Mortland M M, Chiou C T. Soil. Sci. Soc. Am. J., 1988,52(3):652-657

    20. [20]

      [20]Daryn S W, Thomas R K, Castro M A, et al. J. Colloid Interf. Sci., 2003,267:265-271

    21. [21]

      [21]Ray F, He H P, Theo K, et al. Appl. Clay Sci., 2006,31: 262271

    22. [22]

      [22]Vaia R A, Teukolsky R K, Giannelis E P. Chem. Mater., 1994,6:1017-1022

    23. [23]

      [23]Beneke K, Lagaly G. Clays Clay Miner., 1981,16:1-21

    24. [24]

      [24]Brindley G W, Moll W F. Am. Miner., 1955,50:1355-1370

    25. [25]

      [25]Khate D, Chaudhary R. J. Mater. Sci., 2007,42(3):729-746

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(473)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return