Citation: WEI Shi-Yong, YANG Xiao-Hong. Preparation, Characterization and Adsorption Characteristics for Pb(Ⅱ) of Fe3O4 and Ni-Doped Fe3O4 Nanoparticles[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2615-2622. doi: 10.3969/j.issn.1001-4861.2013.00.377 shu

Preparation, Characterization and Adsorption Characteristics for Pb(Ⅱ) of Fe3O4 and Ni-Doped Fe3O4 Nanoparticles

  • Received Date: 8 April 2013
    Available Online: 19 July 2013

    Fund Project: 国家自然科学基金(No.41261060) (No.41261060)湖北省教育厅科学技术研究计划(No.Q20122904)资助项目。 (No.Q20122904)

  • Nanocrystalline magnetite (Fe3O4) and Ni-doped magnetites (NixFe3-xO4, x=0.1, 0.3, and 0.6) were prepared by a modified coprecipitation procedure, and their surface properties and application for the removal of Pb(Ⅱ) ions from aqueous solutions were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen physical adsorption, potentiometric titrations and batch adsorption experiments. Results show that all the samples are single-phase crystalline nanoparticles with an approximately spherical shape. Compared to Fe3O4, the particle size, the pHpzc value and the surface charge at pH=5.0 for NixFe3-xO4 nanoparticles are decreased; and the pore volume, specific surface area (SSA), surface fractal dimension and the content of surface hydroxyls are increased. Langmuir correlation coefficients for Pb(Ⅱ) adsorption on the samples are fairly high (R2=0.9942~0.9858) and they follow the order: Fe3O4>Ni0.1Fe2.9O4>Ni0.3Fe2.7O4=Ni0.6Fe2.4O4, and those of Freundlich model are relatively low (R2=0.9813~0.9477) and the order is opposite to Langmuirs. At pH=5.0, Langmuir adsorption capacities (qmax) of Fe3O4, Ni0.1Fe2.9O4, Ni0.3Fe2.7O4 and Ni0.6Fe2.4O4 are 6.02, 6.68, 7.29, and 8.34 mg·g-1, respectively. Compared to Fe3O4, NixFe3-xO4 nanoparticles with a high content of Ni have a higher adsorption capacity for the Pb(Ⅱ) ions in aqueous solutions.
  • 加载中
    1. [1]

      [1] Li R J, Chang X J, Li Z H, et al. Microchim. Acta, 2011, 172:269-276

    2. [2]

      [2] Ponder S M, Darab J G, Mallouk T E. Environ. Sci. Technol., 2000, 34:2564-2569

    3. [3]

      [3] Tran H V, Tran L D, Nguyen T N. Mater. Sci. Eng. C, 2010, 30:304-310

    4. [4]

      [4] Imamoglu M, Tekir O. Desalination, 2008, 228:108-113

    5. [5]

      [5] Chang Y C, Chen D H. J. Colloid Interf. Sci., 2005, 283: 446-451

    6. [6]

      [6] Liu J F, Zhao Z S, Jiang G B. Environ. Sci. Technol., 2008, 42:6949-6954

    7. [7]

      [7] Illé s E, Tombá cz E. Colloids Surf. A, 2003, 230:99-109

    8. [8]

      [8] Sidhu P S, Gilkes R J, Posner A M. J. Inorg. Nucl. Chem., 1978, 40:429-435

    9. [9]

      [9] Liang X, Zhong Y, Tan W, et al. J. Therm. Anal. Calorim., 2013, 111:1317-1324

    10. [10]

      [10] Mohapatra J, Mitra A, Bahadur D, et al. Cryst. Eng. Comm., 2013, 15:524-532

    11. [11]

      [11] Mathur B S, Venkataramani B. Colloids Surf. A, 1998, 140: 403-416

    12. [12]

      [12] Lelis M F, Rios R V, Lago R M, et al. Hyperfine Interact., 2002 (C):345-349

    13. [13]

      [13] Chun C L, Baer D R, Matson D W, et al. Environ. Sci. Technol., 2010, 44:5079-5085

    14. [14]

      [14] Singh N K, Singh R N. Indian J. Chem. A, 1999, 38:491-495

    15. [15]

      [15] Lelis M D F F, Fabris J D, Mussel W D N, et al. Mater. Res., 2003, 6:145-150

    16. [16]

      [16] Kittaka S, Morimoto T. J. Colloid Interf. Sci., 1980, 75:398-403

    17. [17]

      [17] Tombá cz E, Libor Z, Illé s E. Org. Geochem., 2004, 35:257-267

    18. [18]

      [18] Langmuir I. J. Am. Chem. Soc., 1916, 40:1361-1368

    19. [19]

      [19] Freundlich H M F. J. Phys. Chem. B, 1906, 57:385-470

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    6. [6]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    7. [7]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    8. [8]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    14. [14]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(158)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return