Citation: ZHAO Chun-Rong, YANG Juan-Yu, LU Shi-Gang. Preparation of SiC Nanowires by Direct Electro-reduction of SiO2/C Pellets in Molten Salt[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(12): 2543-2548. doi: 10.3969/j.issn.1001-4861.2013.00.371 shu

Preparation of SiC Nanowires by Direct Electro-reduction of SiO2/C Pellets in Molten Salt

  • Received Date: 23 April 2013
    Available Online: 15 July 2013

    Fund Project: 国家863计划(No.2012AA110102)国家自然科学基金(No.51004016)资助项目。 (No.2012AA110102)国家自然科学基金(No.51004016)

  • Silicon carbide nanowires were synthesized by mixing formaldehyde resin carbon and nanometer silicon dioxide (atomic Si/C ratio, 1∶1) under cell voltage of 2.0 V in molten CaCl2 at 900 ℃. The morphology, structure and chemical composition of the samples prepared by electro-reduction method were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electronic microscope (TEM), High-resolution transmission electron microscopy (HRTEM) coupled with electron energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and laser Raman spectroscopy. The results reveal that silicon carbide nanowires are crystalline with a cube structure, the diameter is distributed from 4 nm to 13 nm and the length is generally several micrometers. Two broad photoluminescence (PL) peaks at the center wavelength of about 415 nm and 534 nm were observed at room temperature. The formation mechanism of the SiC nanowires is also discussed.
  • 加载中
    1. [1]

      [1] Xu S J, Qiao G J, Wang H J, et al. Mater. Lett., 2008, 62: 4549-4551

    2. [2]

      [2] Yang W, Araki H, Hu Q L, et al. J. Crys. Growth, 2004, 264: 278-283

    3. [3]

      [3] HAO Ya-Juan (郝雅娟), JIN Gou-Qiang (靳国强), GUO Xiang-Yun (郭向云). Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2006, 22 (10):1833-1837

    4. [4]

      [4] Chen J J, Shi Q, Xin L P, et al. J. Alloys and Compounds, 2011, 509:6844-6847

    5. [5]

      [5] Han W Q, Fan S S, Li Q Q, et al. Chem. Phys. Lett., 1997, 265:374-378

    6. [6]

      [6] Pan Z W, Lai H L, Au F C K, et al. Adv. Mater., 2000, 12 (16):1186-1190

    7. [7]

      [7] Pol V G, Pol S V, Gedanken A, et al. J. Phys. Chem. B, 2006, 110:11237-11240

    8. [8]

      [8] Zhao D L, Fa L, Zhou W C. J. Alloys Compd., 2010, 490 (1/2): 190-194

    9. [9]

      [9] Shi W S, Zheng Y F, Peng H Y, et al. J. Am. Cream. Soc., 2000, 83 (12):3228-3230

    10. [10]

      [10] Liu X M, Yao K F. Nanotechnology., 2005, 16:2932-2935

    11. [11]

      [11] Zhang H F, Wang C M, Wang L S. Nano Lett., 2002, 2 (9): 941-944

    12. [12]

      [12] Wu R B, Zha B L, Wang L Y, et al. Phys. Status Solidi A, 2012, 209 (3):553-558

    13. [13]

      [13] Dai H, Wong E W, Lu Y Z, et al. Natrue, 1995, 375:769-772

    14. [14]

      [14] Meng G W, Cui Z, Zhang L D, et al. J. Crys. Growth, 2000, 209:801-806

    15. [15]

      [15] Chen G Z, Fray D J, Farthing T W. Natrue, 2000, 407:361-364

    16. [16]

      [16] Wang D H, Jin X B, Chen G Z, et al. Prog. Chem., Sect. C, 2008, 104:189-234

    17. [17]

      [17] Jin X B, Gao P, Wang D H, et al. Angew. Chem. Int. Ed., 2004, 43:733-736

    18. [18]

      [18] LIU Ming-Feng (刘美凤), LU Shi-Gang (卢世刚), KAN Su-Rong (阚素荣). Chinese Journal of Rare Metals (Xiyou Jinshu), 2008, 32 (5):668-673

    19. [19]

      [19] YANG Juan-Yu (杨娟玉), LU Shi-Gang (卢世刚), KAN Su-Rong (阚素荣), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009, 25 (4):756-760

    20. [20]

      [20] Yang J Y, Lu S G, Kan S R, et al. Chem. Commun., 2009: 3273-3275

    21. [21]

      [21] Nishmura Y, Nohira T, Kobayashi K, et al. J. Electrochem. Soc., 2011, 158 (6):E55-E59

    22. [22]

      [22] Wu R B, Yang G Y, Gao M X, et al. Cryst. Growth Des., 2009, 9:100-105

    23. [23]

      [23] MENG A-Lan (孟阿兰), LI Zhen-Jiang (李镇江), ZHANG Can-Ying (张灿英), et al. Rare Metal Materials and Engineering (Xiyou Jinshu Cailiao Yu Gongcheng), 2005, 34:11-14

    24. [24]

      [24] Bechelany M, Brioude S, Cornu D, et al. Adv. Funct. Mater., 2007, 17:939-943

    25. [25]

      [25] YANG Xiu-Chun (杨修春), HAN Gao-Rong (韩高荣), ZHANG Xiao-Bin (张孝彬), et al. Chnese J. Semiconductors (Bandaoti Xuebao), 1998, 19 (6):423-426

    26. [26]

      [26] YANG Juan-Yu (杨娟玉), LU Shi-gang (卢世刚), DING Hai-Yang (丁海洋), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2010, 26 (10):1837-1843

    27. [27]

      [27] Nohira T, Kasuda Y, Ito Y. Nat. Mater., 2003, 2:397-401

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    9. [9]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(0)
  • Abstract views(201)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return