Citation: SHEN Shui-Fa, CHANG Min-Jie, CHE Rong-Feng, PAN Hai-Bo, CHEN Nai-Sheng. Preparation of Bi-crystalline (Monocline and Anatase) TiO2/MWNTs Composite and Its Photocatalytic Activity under Visible Light Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2327-2332. doi: 10.3969/j.issn.1001-4861.2013.00.369 shu

Preparation of Bi-crystalline (Monocline and Anatase) TiO2/MWNTs Composite and Its Photocatalytic Activity under Visible Light Irradiation

  • Received Date: 11 April 2013
    Available Online: 20 July 2013

    Fund Project: 国家自然科学基金(No.21101028) (No.21101028)福建省自然科学基金(No.2012J01204,No.2012J0102) (No.2012J01204,No.2012J0102)福建省教育厅(No.JK2012002)资助项目。 (No.JK2012002)

  • Abi-crystalline (monocline and anatase) titanium dioxide/multi-walled carbon nanotubes (TiO2/MWNTs) composite was prepared through the hydrothermal reaction of tetrabutyl titanate and sodium hydroxide with butyl end-capped fatty alcohol ethoxylates as phase regulator, and its photocatalytic property under visible light irradiation was investigated. The results show: the adding of MWNTs can affect crystalline phase and improve the photocatalytic activity of TiO2, the product with 5% MWNTs exhibits the greatest photocatalytic degradation rate;the photocatalytic activity of the products greatly increases with the increase of calcination temperature. The effect of doping MWNTs originates from (1) facilitating the formation of bi-crystalline phase with monocline and anatase, and (2) excellent conductivity of MWNTs, or (3) the carbon doping effect rooting in the breaking down of MWNTs under higher temperature.
  • 加载中
    1. [1]

      [1] Marchand R, Brohan L, Tournoux M. Mater. Res. Bull., 1980,15(8):1129-1133

    2. [2]

      [2] Banfield J F, Veblen D R, Smith D J. Am. Mineral., 1991, 76:343-353

    3. [3]

      [3] Wang P, Xie T F, Wang D J, et al. Colloid Interface Sci., 2010,350:417-420

    4. [4]

      [4] Ashok K C, Zhang Q, Seung Y C, et al. Appl. Catal. B: Environ., 2010,93:368-375

    5. [5]

      [5] Dong W J, Cogbill A, Tian Z R, et al. J. Phys. Chem. B, 2006,110(34):16819-16822

    6. [6]

      [6] Kuo H L, Kuo C Y, Liu C H, et al. Catal. Lett., 2007,113:7-12

    7. [7]

      [7] LI Jin-Li(李锦丽), FU Ning(付宁), LÜGong-Xuan(吕功煊). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26 (12):2175-2181

    8. [8]

      [8] Yang D J, Liu H W, Zheng Z F, et al. J. Am. Chem. Soc., 2009,131:17885-17893

    9. [9]

      [9] Wang W D, Serp P, Kalck P, et al. J. Mol. Catal. A: Chem., 2005,235(1-2):194-199

    10. [10]

      [10]Ou Y, Lin J D, Fang S M, et al. Chem. Phys. Lett., 2006, 429(1-3):199-203

    11. [11]

      [11]Yu Y, Yu J C, Yu J G, et al. Appl. Catal. A: General, 2005, 289:186-196

    12. [12]

      [12]Liu B, Zeng H C. Chem. Mater., 2008,20(8):2711-2718

    13. [13]

      [13]Chen M L, Zhang F J, Oh W C, et al. New Carbon Mater., 2009,24(2):159-166

    14. [14]

      [14]WANG Qing(汪青), SHANG Jing(尚静), ZHAO Feng-Wei (赵凤伟), et al. J. Mol. Catal.(Fenzi Cuihua), 2010,24(6): 537-541

    15. [15]

      [15]SHEN Shui-Fa(沈水发), CHANG Min-Jie(畅敏杰), CHEN Nai-Sheng(陈耐生), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6):1109-1104

    16. [16]

      [16]CHANG Min-Jie(畅敏杰). Thesis for the Master Degree of Fuzhou University(福州大学硕士学位论文). 2012.

    17. [17]

      [17]CHENG Hui-Ming(成会明). Carbon Nanotubes: Synthesis, Microstructure, Properties and Applications(纳米碳管:制备、 结构、物性及应用). Beijing:Chemical Industry Press, 2002.

    18. [18]

      [18]Khan S U M, AI-Shahry M, William B I J. Science, 2002, 297(5590):2243-2245

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    16. [16]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    17. [17]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(0)
  • Abstract views(142)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return