Citation: LI Qiang, JI Xiao-Xu, ZHONG Qiu, HUANG Xin-Tang, XIONG Li. Ultrafine ZnFe2O4 Nanocrystals Interacting with Proteins[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2375-2381. doi: 10.3969/j.issn.1001-4861.2013.00.368 shu

Ultrafine ZnFe2O4 Nanocrystals Interacting with Proteins

  • Received Date: 8 May 2013
    Available Online: 20 June 2013

    Fund Project: 国家自然科学基金(No.51172085)资助项目。 (No.51172085)

  • Ultrafine ZnFe2O4 nanocrystals were prepared by hydrothermal method and characterized by HRTEM, XRD and EDX techniques respectively. Protein adsorption properties and their correlations to ζ potentials between nanocrystals and protein molecules were investigated under different pH conditions using bovine serum albumin (BSA) and hemoglobin as model proteins. The hydrodynamic size of bare and protein loaded nanocrystals as well as protein conformation changes induced by nanocrystals were respectively studied by dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectroscopy techniques. Results show that adsorption between nanocrystals and hemoglobin obeys the law of electrostatistic interaction, whereas BSA adsorption behavior is not agreed with such law. After hemoglobin loading, most of nanocrystal-protein systems suspend as monomers and trimers apart from a few aggregates, whereas only aggregates exist after BSA adsorbing onto nanocrystals. FTIR spectroscopy revealed that Hemoglobin suffers more conformational changes than that of BSA. In addition, highly protein adsorption capacities exceeding380 mg·g-1 at appropriate pH conditions imply the potential applications of nanocrystals in protein separation.
  • 加载中
    1. [1]

      [1] Mahmoudi M, Lynch I, Ejtehadi M R, et al. Chem. Rev., 2011,111:5610-5637

    2. [2]

      [2] Nel A E, Mdler L, Velegol D, et al. Nat. Mater., 2009,8:543-557

    3. [3]

      [3] Ge C C, Du J F, Zhao L, et al. PNAS, 2011,108:16968-16973

    4. [4]

      [4] Hu W B, Peng C, Lü M, et al. ACS Nano, 2011,5:3693-3700

    5. [5]

      [5] Sun S G, Ma M H, Qiu N, et al. Colloids. Surf. B Biointerfaces, 2011,88:246-253

    6. [6]

      [6] DU Chong-Lei(杜崇磊), DU Wei(杜伟), WANG Bing(汪冰), et al. Chin. J. Anal. Chem.(Fenxi Huaxue), 2010,38(6):902-908

    7. [7]

      [7] ZHAO Zi-Lai(赵紫来), BIAN Zheng-Yun(卞征云), CHEN Lang-Xing(陈朗星), et al. Prog. Chem.(Huaxue Jinzhan), 2006,18(10):1288-1297

    8. [8]

      [8] HUANG Shan-Sheng(黄杉生), YIN Yue-Fen(殷月芬), WANG Ke-Min(王柯敏), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 2004,25(12):2238-2241

    9. [9]

      [9] HUANG Tian-Tian(黄天天), FU Yan(付雁), ZHANG Jin-Li (张金利), et al. Prog. Chem.(Huaxue Jinzhan), 2012,24(8): 1610-1622

    10. [10]

      [10]ZHANG Huai(张怀), ZHANG Yun-Huai(张云怀), LI Jing (李静), et al. Prog. Chem.(Huaxue Jinzhan), 2008,20(2/3): 253-259

    11. [11]

      [11]NI Song-Bo(倪淞波), LI Yan-Bao(李延报), WANG Xiu-Mei (王秀梅). Prog. Chem.(Huaxue Jinzhan), 2011,23(1):231-245

    12. [12]

      [12]LÜYa-Fen(吕亚芬), CAI Cheng-Xin(蔡称心). Acta Chim. Sinica(Huaxue Xuebao), 2006,64(24):2396-2402

    13. [13]

      [13]ZOU Xue-Yan(邹雪艳), CHU Liu-Jie(褚留杰), DONG Shuo (董烁), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2012,33(7):1394-1400

    14. [14]

      [14]LI Ya-Ru(李亚茹), ZHANG Xue-Lian(张雪莲), PAN Yuan-Yuan(潘园园), et al. J. Funct. Mater.(Gongneng Cailiao), 2012,43(8):1045-1048

    15. [15]

      [15]WU Wei(吴伟), HE Quan-Guo(贺全国), CHEN Hong(陈洪). Prog. Chem.(Huaxue Jinzhan), 2008,20(2/3):265-272

    16. [16]

      [16]Xu M, Li J, Iwai H, et al. Sci. Rep., 2012,2:1-6

    17. [17]

      [17]YANG Xiao-Chao(杨小超), MO Zhi-Hong(莫志宏). Acta Chim. Sinica(Huaxue Xuebao), 2010,68(15):1549-1552

    18. [18]

      [18]ZHANG Li(张莉), TANG Xin-Feng(唐新峰), GAO Wen-Bin (高文斌). J. Inorg. Mater.(Wuji Cailiao Xuebao), 2008,23(4): 860-864

    19. [19]

      [19]YUAN Yuan(袁媛), HE Xiao-Xiao(何晓晓), SHI Hui(石慧), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2010,31(11):2167-2172

    20. [20]

      [20]Gan X, Liu T, Zhong J, et al. Chem. Bio. Chem., 2004,5: 1686-1691

    21. [21]

      [21]Zhou H, Gan X, Liu T, et al. J. Biochem. Biophys. Methods, 2005,64:38-45

    22. [22]

      [22]Zhu X, Yuri I, Gan X, et al. Biosens. Bioelectron., 2007,22: 1600-1604

    23. [23]

      [23]Zhou H, Gan X, Liu T, et al. Bioelectrochemistry, 2006,69: 34-40

    24. [24]

      [24]SHAN Hong-Yan(单洪岩), LIU Dian-Jun(刘殿骏), WANG Zhen-Xin(王振新). Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2010,31(12):2372-2374

    25. [25]

      [25]MENG Jie(孟洁), YANG Man(杨曼), WANG Chao-Ying(王 超英), et al. New Carbon Mater.(Xinxing Tancailiao), 2007, 22(3):218-226

    26. [26]

      [26]JU Si-Ting(鞠思婷), PU Ling-Yu(朴玲钰), YANG Lei(杨磊), et al. Prog. Chem.(Huaxue Jinzhan), 2010,22(9):1767-1775

    27. [27]

      [27]GUO Xin-Lu(过馨露), ZHANG Jian(张建), WANG Wei(王 炜). Prog. Phys.(Wulixue Jinzhan), 2012,32(6):285-293

    28. [28]

      [28]TANG Shi-Hua(唐世华), HUANG Jian-Bin(黄建滨). Acta Chim. Sinica(Huaxue Xuebao), 2008,66(13):1534-1540

    29. [29]

      [29]SONG Wei(宋巍), CHEN Hong(陈红). Chin. Sci. Bull.(Kexue Tongbao), 2007,52(23):2701-2704

    30. [30]

      [30]SHI Jie(史婕), FENG Bo(冯波), LU Xiong(鲁雄), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2011,26(12):1329-1303

    31. [31]

      [31]LI De-Jun(李德军), YUAN Li(袁丽), YANG Ying(杨莹), et al. Sci. China. C(Zhongguo Kexue C), 2009,39(6):596-600

    32. [32]

      [32]Doane T L, Chuang C H, Hill R J, et al. Acc. Chem. Res, 2012,45:317-326

    33. [33]

      [33]Rabe M, Verdes D, Seeger S. Adv. Colloid. Interface. Sci, 2011,162:87-106

    34. [34]

      [34]JIANG Yong(蒋勇), SONG Wu-Lin(宋武林), XIE Chang-Sheng(谢长生), et al. Rare Met. Mater. Eng.(Xiyou Jinshu Cailiao Yu Gongcheng), 2006,35(4):617-620

    35. [35]

      [35]JIAO Zheng(焦正), CHEN Feng(陈锋), LI Min-Qiang(李民 强), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2002,17 (2):316-320

    36. [36]

      [36]SUN Mo-Jie(孙墨杰), HU Quan(胡全), LI Jian(李健), et al. Acta Chim. Sinica(Huaxue Xuebao), 2013,71:213-220

    37. [37]

      [37]Xing Z, Ju Z, Yang J, et al. Nano Res., 2012,5(7):477-485

    38. [38]

      [38]Barcena C, Sra A K, Chaubey G S, et al. Chem. Comm., 2008:2224-2226

    39. [39]

      [39]Gao L, Wu J, Lyle S, et al. J. Phys. Chem. C, 2008,112: 17357-17361

    40. [40]

      [40]Komarneni S, Fregeau E, Breval E, et al. J. Am. Ceram. Soc., 1988,71(1):C26-C28

    41. [41]

      [41]SANG Shang-Bin(桑商斌), GU Ying-Ying(古映莹), HUANG Ke-Long(黄可龙). J. Funct. Mater.(Gongneng Cailiao), 2001, 32(1):27-29

    42. [42]

      [42]Kumazawa H, Oki K, Cho H M, et al. Chem. Eng. Comm, 1992,115:25-33

    43. [43]

      [43]Rezwan K, Studart A R, Voros J, et al. J. Phys. Chem. B, 2005,109:14469-14474

    44. [44]

      [44]Liu X, Dai Q, Austin L, et al. J. Am. Chem. Soc., 2008,130: 2780-2782

    45. [45]

      [45]Barth A. Biochim. Biophys. Acta, 2007,1767:1073-1101

    46. [46]

      [46]Waldron R D. Phys. Rev., 1955,99:1727-1735

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    3. [3]

      Yingyue ZHANGLiuqing KANGYating YANGXiaofen GUANWenmin WANG . Crystal structure and antibacterial activity of two Gd2 complexes based on polydentate Schiff-base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1867-1877. doi: 10.11862/CJIC.20250100

    4. [4]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    5. [5]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    6. [6]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    8. [8]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    9. [9]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    10. [10]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    17. [17]

      Wencheng FangDong LiuYing ZhangHao FengQiang Li . Improved Photoelectrochemical Performance by Polyoxometalate-Modified CuBi2O4/Mg-CuBi2O4 Homojunction Photocathode. Acta Physico-Chimica Sinica, 2024, 40(2): 2304006-0. doi: 10.3866/PKU.WHXB202304006

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

Metrics
  • PDF Downloads(0)
  • Abstract views(421)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return