Citation: LI Qiang, JI Xiao-Xu, ZHONG Qiu, HUANG Xin-Tang, XIONG Li. Ultrafine ZnFe2O4 Nanocrystals Interacting with Proteins[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2375-2381. doi: 10.3969/j.issn.1001-4861.2013.00.368 shu

Ultrafine ZnFe2O4 Nanocrystals Interacting with Proteins

  • Received Date: 8 May 2013
    Available Online: 20 June 2013

    Fund Project: 国家自然科学基金(No.51172085)资助项目。 (No.51172085)

  • Ultrafine ZnFe2O4 nanocrystals were prepared by hydrothermal method and characterized by HRTEM, XRD and EDX techniques respectively. Protein adsorption properties and their correlations to ζ potentials between nanocrystals and protein molecules were investigated under different pH conditions using bovine serum albumin (BSA) and hemoglobin as model proteins. The hydrodynamic size of bare and protein loaded nanocrystals as well as protein conformation changes induced by nanocrystals were respectively studied by dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectroscopy techniques. Results show that adsorption between nanocrystals and hemoglobin obeys the law of electrostatistic interaction, whereas BSA adsorption behavior is not agreed with such law. After hemoglobin loading, most of nanocrystal-protein systems suspend as monomers and trimers apart from a few aggregates, whereas only aggregates exist after BSA adsorbing onto nanocrystals. FTIR spectroscopy revealed that Hemoglobin suffers more conformational changes than that of BSA. In addition, highly protein adsorption capacities exceeding380 mg·g-1 at appropriate pH conditions imply the potential applications of nanocrystals in protein separation.
  • 加载中
    1. [1]

      [1] Mahmoudi M, Lynch I, Ejtehadi M R, et al. Chem. Rev., 2011,111:5610-5637

    2. [2]

      [2] Nel A E, Mdler L, Velegol D, et al. Nat. Mater., 2009,8:543-557

    3. [3]

      [3] Ge C C, Du J F, Zhao L, et al. PNAS, 2011,108:16968-16973

    4. [4]

      [4] Hu W B, Peng C, Lü M, et al. ACS Nano, 2011,5:3693-3700

    5. [5]

      [5] Sun S G, Ma M H, Qiu N, et al. Colloids. Surf. B Biointerfaces, 2011,88:246-253

    6. [6]

      [6] DU Chong-Lei(杜崇磊), DU Wei(杜伟), WANG Bing(汪冰), et al. Chin. J. Anal. Chem.(Fenxi Huaxue), 2010,38(6):902-908

    7. [7]

      [7] ZHAO Zi-Lai(赵紫来), BIAN Zheng-Yun(卞征云), CHEN Lang-Xing(陈朗星), et al. Prog. Chem.(Huaxue Jinzhan), 2006,18(10):1288-1297

    8. [8]

      [8] HUANG Shan-Sheng(黄杉生), YIN Yue-Fen(殷月芬), WANG Ke-Min(王柯敏), et al. Chem. J. Chinese Universities (Gaodeng Xuexiao Huaxue Xuebao), 2004,25(12):2238-2241

    9. [9]

      [9] HUANG Tian-Tian(黄天天), FU Yan(付雁), ZHANG Jin-Li (张金利), et al. Prog. Chem.(Huaxue Jinzhan), 2012,24(8): 1610-1622

    10. [10]

      [10]ZHANG Huai(张怀), ZHANG Yun-Huai(张云怀), LI Jing (李静), et al. Prog. Chem.(Huaxue Jinzhan), 2008,20(2/3): 253-259

    11. [11]

      [11]NI Song-Bo(倪淞波), LI Yan-Bao(李延报), WANG Xiu-Mei (王秀梅). Prog. Chem.(Huaxue Jinzhan), 2011,23(1):231-245

    12. [12]

      [12]LÜYa-Fen(吕亚芬), CAI Cheng-Xin(蔡称心). Acta Chim. Sinica(Huaxue Xuebao), 2006,64(24):2396-2402

    13. [13]

      [13]ZOU Xue-Yan(邹雪艳), CHU Liu-Jie(褚留杰), DONG Shuo (董烁), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2012,33(7):1394-1400

    14. [14]

      [14]LI Ya-Ru(李亚茹), ZHANG Xue-Lian(张雪莲), PAN Yuan-Yuan(潘园园), et al. J. Funct. Mater.(Gongneng Cailiao), 2012,43(8):1045-1048

    15. [15]

      [15]WU Wei(吴伟), HE Quan-Guo(贺全国), CHEN Hong(陈洪). Prog. Chem.(Huaxue Jinzhan), 2008,20(2/3):265-272

    16. [16]

      [16]Xu M, Li J, Iwai H, et al. Sci. Rep., 2012,2:1-6

    17. [17]

      [17]YANG Xiao-Chao(杨小超), MO Zhi-Hong(莫志宏). Acta Chim. Sinica(Huaxue Xuebao), 2010,68(15):1549-1552

    18. [18]

      [18]ZHANG Li(张莉), TANG Xin-Feng(唐新峰), GAO Wen-Bin (高文斌). J. Inorg. Mater.(Wuji Cailiao Xuebao), 2008,23(4): 860-864

    19. [19]

      [19]YUAN Yuan(袁媛), HE Xiao-Xiao(何晓晓), SHI Hui(石慧), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2010,31(11):2167-2172

    20. [20]

      [20]Gan X, Liu T, Zhong J, et al. Chem. Bio. Chem., 2004,5: 1686-1691

    21. [21]

      [21]Zhou H, Gan X, Liu T, et al. J. Biochem. Biophys. Methods, 2005,64:38-45

    22. [22]

      [22]Zhu X, Yuri I, Gan X, et al. Biosens. Bioelectron., 2007,22: 1600-1604

    23. [23]

      [23]Zhou H, Gan X, Liu T, et al. Bioelectrochemistry, 2006,69: 34-40

    24. [24]

      [24]SHAN Hong-Yan(单洪岩), LIU Dian-Jun(刘殿骏), WANG Zhen-Xin(王振新). Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2010,31(12):2372-2374

    25. [25]

      [25]MENG Jie(孟洁), YANG Man(杨曼), WANG Chao-Ying(王 超英), et al. New Carbon Mater.(Xinxing Tancailiao), 2007, 22(3):218-226

    26. [26]

      [26]JU Si-Ting(鞠思婷), PU Ling-Yu(朴玲钰), YANG Lei(杨磊), et al. Prog. Chem.(Huaxue Jinzhan), 2010,22(9):1767-1775

    27. [27]

      [27]GUO Xin-Lu(过馨露), ZHANG Jian(张建), WANG Wei(王 炜). Prog. Phys.(Wulixue Jinzhan), 2012,32(6):285-293

    28. [28]

      [28]TANG Shi-Hua(唐世华), HUANG Jian-Bin(黄建滨). Acta Chim. Sinica(Huaxue Xuebao), 2008,66(13):1534-1540

    29. [29]

      [29]SONG Wei(宋巍), CHEN Hong(陈红). Chin. Sci. Bull.(Kexue Tongbao), 2007,52(23):2701-2704

    30. [30]

      [30]SHI Jie(史婕), FENG Bo(冯波), LU Xiong(鲁雄), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2011,26(12):1329-1303

    31. [31]

      [31]LI De-Jun(李德军), YUAN Li(袁丽), YANG Ying(杨莹), et al. Sci. China. C(Zhongguo Kexue C), 2009,39(6):596-600

    32. [32]

      [32]Doane T L, Chuang C H, Hill R J, et al. Acc. Chem. Res, 2012,45:317-326

    33. [33]

      [33]Rabe M, Verdes D, Seeger S. Adv. Colloid. Interface. Sci, 2011,162:87-106

    34. [34]

      [34]JIANG Yong(蒋勇), SONG Wu-Lin(宋武林), XIE Chang-Sheng(谢长生), et al. Rare Met. Mater. Eng.(Xiyou Jinshu Cailiao Yu Gongcheng), 2006,35(4):617-620

    35. [35]

      [35]JIAO Zheng(焦正), CHEN Feng(陈锋), LI Min-Qiang(李民 强), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2002,17 (2):316-320

    36. [36]

      [36]SUN Mo-Jie(孙墨杰), HU Quan(胡全), LI Jian(李健), et al. Acta Chim. Sinica(Huaxue Xuebao), 2013,71:213-220

    37. [37]

      [37]Xing Z, Ju Z, Yang J, et al. Nano Res., 2012,5(7):477-485

    38. [38]

      [38]Barcena C, Sra A K, Chaubey G S, et al. Chem. Comm., 2008:2224-2226

    39. [39]

      [39]Gao L, Wu J, Lyle S, et al. J. Phys. Chem. C, 2008,112: 17357-17361

    40. [40]

      [40]Komarneni S, Fregeau E, Breval E, et al. J. Am. Ceram. Soc., 1988,71(1):C26-C28

    41. [41]

      [41]SANG Shang-Bin(桑商斌), GU Ying-Ying(古映莹), HUANG Ke-Long(黄可龙). J. Funct. Mater.(Gongneng Cailiao), 2001, 32(1):27-29

    42. [42]

      [42]Kumazawa H, Oki K, Cho H M, et al. Chem. Eng. Comm, 1992,115:25-33

    43. [43]

      [43]Rezwan K, Studart A R, Voros J, et al. J. Phys. Chem. B, 2005,109:14469-14474

    44. [44]

      [44]Liu X, Dai Q, Austin L, et al. J. Am. Chem. Soc., 2008,130: 2780-2782

    45. [45]

      [45]Barth A. Biochim. Biophys. Acta, 2007,1767:1073-1101

    46. [46]

      [46]Waldron R D. Phys. Rev., 1955,99:1727-1735

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    8. [8]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    9. [9]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    14. [14]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    15. [15]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    16. [16]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    17. [17]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

Metrics
  • PDF Downloads(0)
  • Abstract views(190)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return