Citation: LIAO Jin-Sheng, SU Zhen-Yu, ZHOU Dan, LIU Shao-Hua, WEN He-Rui. Hydrothermal Method and Luminescent Properties of Ca0.8-2x(YbxTb0.1Na0.1+x)2xWO4 Near-Infrared Downconversion Phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2351-2356. doi: 10.3969/j.issn.1001-4861.2013.00.349 shu

Hydrothermal Method and Luminescent Properties of Ca0.8-2x(YbxTb0.1Na0.1+x)2xWO4 Near-Infrared Downconversion Phosphor

  • Received Date: 26 March 2013
    Available Online: 10 May 2013

    Fund Project: 国家自然科学基金(No.51162012,21161008) (No.51162012,21161008)江西省教育厅基金(GJJ12327)资助项目。 (GJJ12327)

  • An efficient near-infrared (NIR) quantum cutting in Ca0.8-2x(YbxTb0.1Na0.1+x)2xWO4(x=0~20%) phosphors has been demonstrated, which involves the emission of two low-energy NIR photons (around 980 nm) from an absorbed ultra-violet photon via the two cooperative energy transfer processes both from (direct) the WO42- group to Yb3+ ions and (indirect) the WO42- group to Tb3+ to Yb3+ ions. The dependence of Yb3+ doping concentration on the visible and NIR emissions, decay lifetime, and quantum efficiencies have been investigated in detail. Yb3+ concentration dependent quantum efficiency has been calculated and the maximum quantum efficiency approaches up to 135.7%. The development of the near-infrared quantum cutting tungstates could open a route in achieving high efficiency silicon-based solar cells by means of downconversion in ultra-violet part of the solar spectrum to about 1000 nm photons with a two fold increase in the photon number.
  • 加载中
    1. [1]

      [1] Van der Zwaan B, Rabl A. Sol. Energy, 2003,74:19-31

    2. [2]

      [2] Zhang Q Y, Huang X Y. Prog. Mater. Sci., 2010,55:353-427

    3. [3]

      [3] LI Shu-Quan(李树全), LIN Jian-Ming(林建明), WU Ji-Huai (吴季怀), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(1):60-64

    4. [4]

      [4] LI Sheng-Jun(李胜军), LIN Yuan(林原), YANG Shi-Wei (杨世伟), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(11):1965-1969

    5. [5]

      [5] Shockley W, Queisser H J. J. Appl. Phys., 1961,32:510-519

    6. [6]

      [6] Trupke T, Green M A, Würfel P. J. Appl. Phys., 2002,92: 1668-1674

    7. [7]

      [7] Richards B S. Solar Energy Mater. Sol. Cells 2006,90:2329-2337

    8. [8]

      [8] Van der Ende B M, Aarts L, Meijerink A. Adv. Mater., 2009, 21:3073-3077

    9. [9]

      [9] Zhou J J, Teng Y, Ye S, et al. Opt. Mater., 2012,34:901-905

    10. [10]

      [10]Wegh R T, Donker H, Oskam K D, et al. Science, 1999,283: 663-666

    11. [11]

      [11]Sommerdijk J L, Bril A, de Jager A W. J. Lumin., 1974,8: 341-343

    12. [12]

      [12]Pappalardo R. J. Lumin., 1976,14:159-193

    13. [13]

      [13]Chen Q J, Zhang W J, Huang X Y, et al. J. Alloys Compd., 2012,513:139-144

    14. [14]

      [14]Kodama N, Watanabe Y. Appl. Phys. Lett., 2004,84:4141

    15. [15]

      [15]Loureiro S M, Setlur A, Heward W, et al. Chem. Mater. 2005,17:3108-3113

    16. [16]

      [16]Lee T J, Luo L Y, Diau W G, et al. Appl. Phys. Lett., 2006,89:131121

    17. [17]

      [17]Vergeer P, Vlugt T J H, Kox M H F, et al. Phys. Rev. B, 2005,71:014119-014130

    18. [18]

      [18]Zhang Q Y, Yang G F, Jiang Z H. Appl. Phys. Lett., 2007, 91:051903(5 pages)

    19. [19]

      [19]Ye S, Zhu B, Chen J, et al. Appl. Phys. Lett., 2008,92: 141112(4 pages)

    20. [20]

      [20]Chen D Q, Yu Y L, Wang Y S, et al. J. Phys. Chem. C, 2009, 113:6406-6410

    21. [21]

      [21]Yuan J L, Zeng X Y, Zhao J T, et al. J. Phys. D: Appl. Phys., 2008,41:105406(6 pages)

    22. [22]

      [22]Wang Z F, Wang Y H, Li Y Z, et al. J. Mater. Res., 2011,26:393-396

    23. [23]

      [23]Lau M K, Hao J H. Energy Procedia, 2012,15:129-134

    24. [24]

      [24]Xie L C, Wang Y H, Zhang H J. Appl. Phys. Lett., 2009,94: 061905(7 pages)

    25. [25]

      [25]LIN Hui(林辉), ZHOU Sheng-Ming(周胜明), HOU Xiao-Rui (候肖瑞), et al. Acta Opt. Sin.(Guangxue Xuebao), 2010,30 (12):3547-3551

    26. [26]

      [26]LI Kai-Yu(李开宇), WANG Ru-Zhi(王如志), QU Ming-Hao (曲铭浩), et al. Chinese J. Lumin.(Faguang Xuebao), 2009, 25(1):60-64

    27. [27]

      [27]Chen X R, Su L, Wang Y Q, et al. Opt. Mater., 2012,34: 1102-1106

    28. [28]

      [28]Su Y G, Li L P, Li G S. Chem. Mater., 2008,20:6060-6067

    29. [29]

      [29]Liao J S, Qiu B, Wen H R, et al. Opt. Mater., 2009,31: 1513-1516

    30. [30]

      [30]YANG Shui-Jin(杨水金), SUN Jun-Tang(孙聚堂), QIN Zi-Bin (秦子斌), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 1994,10(4):358-362

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(150)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return