Citation: JIANG Hong-Ji, MAO Bing-Xue. One-Pot Step Hydrothermal Synthesis of Nano-Composites Based on Graphene and CdSe Quantum Dots with Different Morphology[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2305-2314. doi: 10.3969/j.issn.1001-4861.2013.00.342 shu

One-Pot Step Hydrothermal Synthesis of Nano-Composites Based on Graphene and CdSe Quantum Dots with Different Morphology

  • Received Date: 6 March 2013
    Available Online: 21 May 2013

    Fund Project: 国家科技部重大基础研究计划(No.2009CB930600,2012CB933301) (No.2009CB930600,2012CB933301)“有机与生物光电子学”教育部创新团队(No.IRT1148) (No.IRT1148)

  • Graphene oxides and graphene by using redox method were synthesized and characterized. The properties of graphene obtained by chemical reduction method of NaBH4 and thermal reduction method in ethylene amine solvent were further compared. It was demonstrated that thermal reduction of graphene oxides in ethylene amine solvent could introduce nitrogen functional groups to the surface of obtained graphene, increase the distance between the film layers and enhance its dispersity. The results demonstrated that graphene oxides were reduced, CdSe quantum dots were loaded simultaneously, and oxygen content as significantly decreased. The change of reaction temperature showed little effects on the reduction of graphene oxides, and longer the reaction time, higher the reduction rate of graphene oxides. With the increase of reaction time, the CdSe quantum dots loaded on the surface of graphene grew into nanorods, nanowires, and even branch-shaped nano structures. By controlling the reaction time and temperature, we can easily control the reduction level of graphene oxides and the morphology of CdSe quantum dots supported on the surface of graphene. In conclusion, an effective method is established to control the properties and morphology of nano-composites based on graphene and CdSe quantum dots by hydro-thermal methods.
  • 加载中
    1. [1]

      [1] Chen J H, Jang C, Xiao S D, et al. Nat. Nanotechnol., 2008, 3:206-209

    2. [2]

      [2] Bolotin K I, Sikes K J, Jiang Z, et al. Solid. State. Commun., 2008,146:351-355

    3. [3]

      [3] Wang X S, Huang P, Feng L L, et al. Rsc. Adv., 2012,2: 3816-3822

    4. [4]

      [4] Balandin A A, Ghosh S, Bao W Z, et al. Nano Lett., 2008,8: 902-907

    5. [5]

      [5] Lee C, Wei X, Kysar J W, et al. Science, 2008,321:385-388

    6. [6]

      [6] Stoller M D, Park S J, Zhu Y, et al. Nano Lett., 2008,8: 3498-3502

    7. [7]

      [7] Schedin F, Geim A K, Morozov S V, et al. Nat. Mater., 2007,6:652-655

    8. [8]

      [8] Avouris P, Xia F N, Mueller T, et al. Nat. Nanotechnol., 2009,4:839-843

    9. [9]

      [9] Wang X R, Ouyang Y J, Li X L, et al. Phys. Rev. Lett., 2008,100:235-238

    10. [10]

      [10]Blake P, Brimicombe P D, Nair R R, et al. Nano Lett., 2008,8:1704-1708

    11. [11]

      [11]Xiang B, Wang P W, Zhang X Z, et al. Nano Lett., 2007,7: 323-328

    12. [12]

      [12]Berger C, Song Z M, Li X B, et al. Science, 2006,312:1191-1196

    13. [13]

      [13]Li X S, Cai W W, Colombo L, et al. Nano Lett., 2009,9: 4268-4272

    14. [14]

      [14]Brodie B C. Philos. Trans. R. Soc. London., 1859,149:249-259

    15. [15]

      [15]Hummer W S, Offeman R E. J. Am. Chem. Soc., 1958,80: 1339-1339

    16. [16]

      [16]Staudenmaier L. Ber D. Chem. Ges., 1898,31:1481-1487

    17. [17]

      [17]Ren P G, Yan D X, Ji X, et al. Nanotechnology, 2011,22: 055705.1-055705.8

    18. [18]

      [18]Nethravathi C, Rajamathi M. Carbon, 2008,46:1994-1998

    19. [19]

      [19]Sun H M, Cao L Y, Lu L H. Nano Res., 2011,4:550-562

    20. [20]

      [20]Dai Y Q, Jing Y, Zeng J, et al. J. Mater. Chem., 2011,21: 18174-18179

    21. [21]

      [21]Lu T, Pan L K, Nie C Y, et al. Physica. Status. Solidi. A, 2011,208:2325-2327

    22. [22]

      [22]Jarosz M V, Porter V J, Fisher B R, et al. Phys. Rev. B, 2004,70:195327.1-19537.12

    23. [23]

      [23]Luo Z, Somers L A, Dan Y, et al. Nano Lett., 2010,10:777-781

    24. [24]

      [24]Chen Z, Berciaud S, Nuckolls C, et al. ACS Nano, 2010,4: 2964-2968

    25. [25]

      [25]Kamat P V. J. Phys. Chem. Lett., 2010,1:520-527

    26. [26]

      [26]Williams G, Seger B, Kamat P V. ACS Nano, 2008,2:1487-1491

    27. [27]

      [27]Williams G, Seger B, Kamat P V. Langmuir, 2009,25:13869-13973

    28. [28]

      [28]Cao A, Liu Z, Chu S, et al. Adv. Mater., 2010,22:103-106

    29. [29]

      [29]Gur I, Fromer N A, Geier M L. Science, 2005,310:462-465

    30. [30]

      [30]Farrow B, Kamat P V. J. Am. Chem. Soc., 2009,131:11124-11131

    31. [31]

      [31]Lin Y, Zhang K, Chen W, et al. ACS Nano, 2010,4:3033-3038

    32. [32]

      [32]Abdallah F Z, Samay S, Sherif M, et al. J. Phys. Chem. C, 2010,114:19920-19927

    33. [33]

      [33]Geng X M, Niu L, Xing Z Y, et al. Adv. Mater., 2010,22: 638-642

    34. [34]

      [34]Oh W C, Chen M L, Cho K Y, et al. Chin. J. Catal., 2011, 32:1577-1583

    35. [35]

      [35]Chu J, Li X, Xu P. J. Mater. Chem., 2011,21:11283-11287

    36. [36]

      [36]Yanga D G, Velamakannia A, Bozoklub G, et al. J. Carbon, 2009,47:145-152

    37. [37]

      [37]Wang X S, Yang D P, Huang G S, et al. J. Mater. Chem., 2012,22:17441-17444

    38. [38]

      [38]Wang D B, Yu D B, Mo M S, et al. J. Cryst. Growth, 2003, 253:445-451

    39. [39]

      [39]Shama A Y W, Notley S M. Soft. Matter., 2013,9:6645-6653

    40. [40]

      [40]Li C, Shi G Q. Nanoscale, 2012,4:5549-5563

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(0)
  • Abstract views(146)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return