Citation: JIANG Li-Long, LIU Xian, CAO Yan-Ning, ZENG Jie-Kai, LIN Shi-Tuan, WEI Ke-Mei. Effect of Fe2O3 Content on Structure and Catalytic Performance of Cu-Fe/Bauxite for Water Gas Shift Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2297-2304. doi: 10.3969/j.issn.1001-4861.2013.00.338 shu

Effect of Fe2O3 Content on Structure and Catalytic Performance of Cu-Fe/Bauxite for Water Gas Shift Reaction

  • Received Date: 9 March 2013
    Available Online: 6 June 2013

    Fund Project: 福建省自然科学基金(No.2011J01036) (No.2011J01036)福州大学育苗基金(No.2012-XY-5)资助项目。 (No.2012-XY-5)

  • Using modified bauxite with large surface area and mesoporous structure as the support, a series of Cu-Fe/Bauxite catalysts were synthesized with co-precipitation method. The catalysts were characterized by means of X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), SBET, H2-temperature-programmed reduction (H2-TPR) and CO temperature-programmed desorption (CO-TPD) and X-ray photoelectron spectroscopy (XPS). Their catalytic activity in water gas shift (WGS) reaction has also been studied. The results indicate that the WGS reaction activity increases markedly with increasing the content of supported Fe2O3 and when the content of Fe2O3 is to 20%, the catalyst exhibits the highest activity. Because there exists obvious interaction between supported Fe2O3 and CuO to form composite oxide like CuFe2O4 and it enhances with increase in Fe2O3 content. The interaction promotes the reduction of Fe2O3 and CuO and restrains the clotting of CuO, and then the catalytic activity increases.
  • 加载中
    1. [1]

      [1] JIANG Li-Long(江莉龙), YE Bing-Huo(叶炳火), WEI Ke-Mei(魏可镁). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(10):1733-1737

    2. [2]

      [2] FENG Shu-Bo(冯树波), LIANG Rui-E(梁瑞娥), DONG-Xian-Deng(董献登), et al. Chin. J. Catal. (Cuihua Xuebao), 1996,17:391-393

    3. [3]

      [3] Li Y, Fu Q, Flytzani-Stephanopoulos M. Appl. Catal. B, 2000, 27:179-191

    4. [4]

      [4] ZHENG Qi(郑起), XU Jian-Ben(徐建本), WEI Ke-Mei (魏可镁),et al. Chin. J. Catal. (Cuihua Xuebao), 1999,01: 21-24

    5. [5]

      [5] Zhang H M, Wu S Y, Zhang Z H. Condens. Matter. Phys., 2011,14:1-6

    6. [6]

      [6] Sagar G V, Rao P V R, Srikanth C S, et al. J. of Phys. Chem. B, 2006,110:13881-13888

    7. [7]

      [7] Chen C S, You J H., Lin J H, et al. Catal. Commun., 2008, 9:1230-1234

    8. [8]

      [8] Tanaka Y. J. Catal., 2003,215:271-278

    9. [9]

      [9] Shishido T, Yamamoto M, Atake I, et al. J. Mol. Catal. A: Chem., 2006,253:270-278

    10. [10]

      [10]Chen C S, Cheng W H, Lin S S. Appl. Catal., A, 2004,257: 97-106

    11. [11]

      [11]Lendzion-Bielun Z, Bettahar M M, Monteverdi S. Catal. Commun., 2010,11:1137-1142

    12. [12]

      [12]JIANG Li-Long(江莉龙), Ma Yong-De(马永德), CAO Yan-Ning(曹彦宁), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6):1157-1164

    13. [13]

      [13]JIANG Li-Long(江莉龙), Ma Yong-De(马永德), CAO Yan-Ning(曹彦宁), et al. Acta Phys.-Chin. Sin.(Wuli Huaxue Xuebao), 2012,28(03):674-680

    14. [14]

      [14]Faungnawakij K, Shimoda N, Fukunaga T, et al. Appl. Catal., B, 2009,92:341-350

    15. [15]

      [15]Yang X M, Wei Y, Su Y L, et al. Fuel Process. Technol., 2010,91:1168-1173

    16. [16]

      [16]Gingasu D, Mindru I, Patron L, et al. J. Alloys Compd, 2008,460:627-631

    17. [17]

      [17]Ristic M, Hannoyer B, Popovic S, et al. Mater. Sci. Eng., B, 2000,77:73-82

    18. [18]

      [18]Khan A, Smirniotis P G. J. Mol. Catal. A: Chem., 2008,280: 43-51

    19. [19]

      [19]Estrella M, Barrio L, Zhou G, et al. J. Phys. Chem. C, 2009, 113:14411-14417

    20. [20]

      [20]Mahajan R P, Patankar K K, Kothale M B, et al. Bull. Mater. Sci., 2000,23:273-279

    21. [21]

      [21]Liu Y C, Fu Y P. Ceram. Int., 2010,36:1597-1601

    22. [22]

      [22]ZHANG Ping(张平), YU Bo(于波), ZHANG Lei(张磊). Sci. China B: Chem.(Zhonguo Kexue B),2008,38(7):624-630

    23. [23]

      [23]Parmigiani F, Pacchioni G, Illas F, et al. J. Electron Spectrosc. Relat. Phenom., 1992,59:255-269

    24. [24]

      [24]Jolley J G, Geesey G, Haukins M R, et al. Appl. Surf. Sci., 1989,37:469-480

    25. [25]

      [25]Nakamura T, Tomizuka H, Takahashi M, et al. J. Surf. Sci. Soc.Jpn., 1995,16:515-521

    26. [26]

      [26]McIntyre N S, Cook M G. Anal. Chem., 1975,47:2208-2213

    27. [27]

      [27]Sing K S W, Everett D H, Haul R A W, et al. Pure Appl. Chem., 1985,57:603-619

    28. [28]

      [28]Venugopal A, Aluha J, Scurrell M S, et al. Appl. Catal. A, 2003,45:149-158

    29. [29]

      [29]Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Appl. Catal. A, 2007,326:17-27

    30. [30]

      [30]Delahay G, Coq B, Broussous L. Appl. Catal. B, 1997,12: 49-59

    31. [31]

      [31]YE Qing(叶青), YAN Li-Na(闫立娜), HUO Fei-Fei(霍飞飞), et al. Acta Chimica Sinica(Huaxue Xuebao), 2011,69(13): 1524-1532

    32. [32]

      [32]Charles Kittel, Ryosei Uno(宇野良淸). Introduction to Solid State Physics(固体物理学入门). Japan: Maruzen, 1988.

    33. [33]

      [33]Lohitharn N, Goodwin J G, Lotero E. J. Catal., 2008,255: 104-113

    34. [34]

      [34]Lee H C, Kim D H. Catal. Today, 2008,132:109-113

    35. [35]

      [35]Pan Z Y, Dong M H, Meng X K, et al. Chem. Eng. Sci., 2007,62(10):2712-2715

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(0)
  • Abstract views(185)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return