Citation: JIANG Li-Long, LIU Xian, CAO Yan-Ning, ZENG Jie-Kai, LIN Shi-Tuan, WEI Ke-Mei. Effect of Fe2O3 Content on Structure and Catalytic Performance of Cu-Fe/Bauxite for Water Gas Shift Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(11): 2297-2304. doi: 10.3969/j.issn.1001-4861.2013.00.338 shu

Effect of Fe2O3 Content on Structure and Catalytic Performance of Cu-Fe/Bauxite for Water Gas Shift Reaction

  • Received Date: 9 March 2013
    Available Online: 6 June 2013

    Fund Project: 福建省自然科学基金(No.2011J01036) (No.2011J01036)福州大学育苗基金(No.2012-XY-5)资助项目。 (No.2012-XY-5)

  • Using modified bauxite with large surface area and mesoporous structure as the support, a series of Cu-Fe/Bauxite catalysts were synthesized with co-precipitation method. The catalysts were characterized by means of X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), SBET, H2-temperature-programmed reduction (H2-TPR) and CO temperature-programmed desorption (CO-TPD) and X-ray photoelectron spectroscopy (XPS). Their catalytic activity in water gas shift (WGS) reaction has also been studied. The results indicate that the WGS reaction activity increases markedly with increasing the content of supported Fe2O3 and when the content of Fe2O3 is to 20%, the catalyst exhibits the highest activity. Because there exists obvious interaction between supported Fe2O3 and CuO to form composite oxide like CuFe2O4 and it enhances with increase in Fe2O3 content. The interaction promotes the reduction of Fe2O3 and CuO and restrains the clotting of CuO, and then the catalytic activity increases.
  • 加载中
    1. [1]

      [1] JIANG Li-Long(江莉龙), YE Bing-Huo(叶炳火), WEI Ke-Mei(魏可镁). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,23(10):1733-1737

    2. [2]

      [2] FENG Shu-Bo(冯树波), LIANG Rui-E(梁瑞娥), DONG-Xian-Deng(董献登), et al. Chin. J. Catal. (Cuihua Xuebao), 1996,17:391-393

    3. [3]

      [3] Li Y, Fu Q, Flytzani-Stephanopoulos M. Appl. Catal. B, 2000, 27:179-191

    4. [4]

      [4] ZHENG Qi(郑起), XU Jian-Ben(徐建本), WEI Ke-Mei (魏可镁),et al. Chin. J. Catal. (Cuihua Xuebao), 1999,01: 21-24

    5. [5]

      [5] Zhang H M, Wu S Y, Zhang Z H. Condens. Matter. Phys., 2011,14:1-6

    6. [6]

      [6] Sagar G V, Rao P V R, Srikanth C S, et al. J. of Phys. Chem. B, 2006,110:13881-13888

    7. [7]

      [7] Chen C S, You J H., Lin J H, et al. Catal. Commun., 2008, 9:1230-1234

    8. [8]

      [8] Tanaka Y. J. Catal., 2003,215:271-278

    9. [9]

      [9] Shishido T, Yamamoto M, Atake I, et al. J. Mol. Catal. A: Chem., 2006,253:270-278

    10. [10]

      [10]Chen C S, Cheng W H, Lin S S. Appl. Catal., A, 2004,257: 97-106

    11. [11]

      [11]Lendzion-Bielun Z, Bettahar M M, Monteverdi S. Catal. Commun., 2010,11:1137-1142

    12. [12]

      [12]JIANG Li-Long(江莉龙), Ma Yong-De(马永德), CAO Yan-Ning(曹彦宁), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(6):1157-1164

    13. [13]

      [13]JIANG Li-Long(江莉龙), Ma Yong-De(马永德), CAO Yan-Ning(曹彦宁), et al. Acta Phys.-Chin. Sin.(Wuli Huaxue Xuebao), 2012,28(03):674-680

    14. [14]

      [14]Faungnawakij K, Shimoda N, Fukunaga T, et al. Appl. Catal., B, 2009,92:341-350

    15. [15]

      [15]Yang X M, Wei Y, Su Y L, et al. Fuel Process. Technol., 2010,91:1168-1173

    16. [16]

      [16]Gingasu D, Mindru I, Patron L, et al. J. Alloys Compd, 2008,460:627-631

    17. [17]

      [17]Ristic M, Hannoyer B, Popovic S, et al. Mater. Sci. Eng., B, 2000,77:73-82

    18. [18]

      [18]Khan A, Smirniotis P G. J. Mol. Catal. A: Chem., 2008,280: 43-51

    19. [19]

      [19]Estrella M, Barrio L, Zhou G, et al. J. Phys. Chem. C, 2009, 113:14411-14417

    20. [20]

      [20]Mahajan R P, Patankar K K, Kothale M B, et al. Bull. Mater. Sci., 2000,23:273-279

    21. [21]

      [21]Liu Y C, Fu Y P. Ceram. Int., 2010,36:1597-1601

    22. [22]

      [22]ZHANG Ping(张平), YU Bo(于波), ZHANG Lei(张磊). Sci. China B: Chem.(Zhonguo Kexue B),2008,38(7):624-630

    23. [23]

      [23]Parmigiani F, Pacchioni G, Illas F, et al. J. Electron Spectrosc. Relat. Phenom., 1992,59:255-269

    24. [24]

      [24]Jolley J G, Geesey G, Haukins M R, et al. Appl. Surf. Sci., 1989,37:469-480

    25. [25]

      [25]Nakamura T, Tomizuka H, Takahashi M, et al. J. Surf. Sci. Soc.Jpn., 1995,16:515-521

    26. [26]

      [26]McIntyre N S, Cook M G. Anal. Chem., 1975,47:2208-2213

    27. [27]

      [27]Sing K S W, Everett D H, Haul R A W, et al. Pure Appl. Chem., 1985,57:603-619

    28. [28]

      [28]Venugopal A, Aluha J, Scurrell M S, et al. Appl. Catal. A, 2003,45:149-158

    29. [29]

      [29]Jozwiak W K, Kaczmarek E, Maniecki T P, et al. Appl. Catal. A, 2007,326:17-27

    30. [30]

      [30]Delahay G, Coq B, Broussous L. Appl. Catal. B, 1997,12: 49-59

    31. [31]

      [31]YE Qing(叶青), YAN Li-Na(闫立娜), HUO Fei-Fei(霍飞飞), et al. Acta Chimica Sinica(Huaxue Xuebao), 2011,69(13): 1524-1532

    32. [32]

      [32]Charles Kittel, Ryosei Uno(宇野良淸). Introduction to Solid State Physics(固体物理学入门). Japan: Maruzen, 1988.

    33. [33]

      [33]Lohitharn N, Goodwin J G, Lotero E. J. Catal., 2008,255: 104-113

    34. [34]

      [34]Lee H C, Kim D H. Catal. Today, 2008,132:109-113

    35. [35]

      [35]Pan Z Y, Dong M H, Meng X K, et al. Chem. Eng. Sci., 2007,62(10):2712-2715

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Yuying JIANGJia LUOZhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    12. [12]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

Metrics
  • PDF Downloads(0)
  • Abstract views(391)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return