Citation: YANG Jing, CUI Shi-Hai, LIAN Hong-Zhen. Preparation of Magnetical Photocatalyst Fe3O4/C/TiO2 for Degradation of2,4,6-Trichlorophenol in Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2043-2048. doi: 10.3969/j.issn.1001-4861.2013.00.332 shu

Preparation of Magnetical Photocatalyst Fe3O4/C/TiO2 for Degradation of2,4,6-Trichlorophenol in Aqueous Solution

  • Received Date: 27 March 2013
    Available Online: 17 May 2013

    Fund Project: 国家重点基础研究发展计划(973计划)(No.2009CB421601,2011CB911003) (973计划)(No.2009CB421601,2011CB911003)国家自然科学基金(No.21275069,21177061) (No.21275069,21177061)江苏省高校自然科学基金(No.11KJB150008)江苏高校优势学科建设工程资助项目。 (No.11KJB150008)

  • Aseparable magnetic photocatalyst (Fe3O4/C/TiO2) was prepared by a hydrothermal reaction with the reaction of FeCl3, glucose and tetrabutyltitanate. The catalyst Fe3O4/C/TiO2 was characterized in terms of particle size, morphology and phase by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectrometry, vibration sample magnetometry (VSM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The catalytic activities and mechanism were evaluated by degradation of 2,4,6-trichlorophenol (TCP) aqueous solution. The reaction mechanism was investigated by the fluorescence technique. The results indicate that the catalyst has high degradation abilities and can be easily separated and reused by an external magnetic field. TCPcan be effectively degraded by 97.9% in the use of 1 g·L-1 Fe3O4/C/TiO2 under 18 W UVlight within50 min. Adegradation rate of 95.1% can be maintained after 6 cycles. The hydroxyl radicals (OH) have been detected in the reaction.
  • 加载中
    1. [1]

      [1] Aranda C, Godoy F, Becerra J, et al. Biodegradation, 2003, 14:265-274 [2] Xun L, Webster C M. J. Biol. Chem, 2004,279:6696-6700 [3] Dionysiou D D, Khodadoust A P, Kern A M, et al. Appl. Catal. B, 2000,24:139-155 [4] Bandara J, Mielczarski J A, Lopez A, et al. Appl. Catal. B, 2001,34:321-333 [5] Shriwas A K, Gogate P R. Ind. Eng. Chem. Res., 2011,50: 9601-9608 [6] Ahuja D, Bachas L, Bhattacharyya D. Chemosphere, 2007, 66:2193-2200 [7] Li Y, Bachas L, Bhattacharyya D. Environ. Sci. Technol., 2005,22:756-771 [8] Graham N, Chu W, Lau C. Chemosphere, 2003,51:237-243 [9] Aal A, Mahmoud S, Aboul-Gheit A. Nanoscale Res. Lett., 2009,4:627-634 [10]Androulaki E, Hiskia A, Dimotikali D, et al. Environ. Sci. Technol., 2000,34:2024-2028 [11]Rengaraj S, Li X. J. Mol. Catal. A: Chem., 2006,243:60-67 [12]Vijayan P, Mahendiran C, Suresh C, et al. Catal. Today, 2009,141:220-224 [13]Wang Y, Zhang Y, Zhao G, et al. ACS Appl. Mater. Interfaces, 2012,4:3965-3972 [14]Beydoun D, Amal R. J. Phys. Chem. B, 2000,104:4387-4396 [15]Yu X, Liu S, Yu J. Appl. Catal. B, 2011,104:12-20 [16]Yuan Q, Li N, Geng W, et al. Mater. Res. Bull., 2012,47: 2396-2402 [17]WANG Zheng(王拯), ZHANG Feng-Bao(张风宝). Chinese J. Environ. Chem.(Huanjing Huaxue), 2008,27(3):283-287 [18]Shi F, Li Y, Zhang Q, et al. Int. J. Photoenergy, 2012,2012: 1-8 [19]BAO Shu-Juan(包淑娟), ZHANG Xiao-Gang(张校刚), LIU Xian-Ming(刘献明). J. Funct. Mater.(Gongneng Cailiao), 2004,1(35):108-113 [20]ZHANG Xiu-Ling(张秀玲), GAO Shuai(高帅), YUAN Xue- De(袁学德), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(11):1912-1916 [21]Wang Z F, Guo H S, Yu Y L et al. J. Magn. Magn. Mater., 2006,302:397-404 [22]Zhang S, Niu H, Hu Z, et al. J. Chromatogr. A, 2010,1217: 4757-4764 [23]Deng H, Li X, Peng Q, et al. Angew. Chem. Int. Ed., 2005, 44:2782-2785 [24]Zhang Z, Duan H, Li S, et al. Langmuir, 2010,26:6676-6680 [25]Xuan S, Jiang W, Gong X, et al. J. Phys. Chem. C, 2009, 113:553-558 [26]Vijayan P, Mahendiran C, Suresh C, et al. Catal. Today, 2009,141:220-224 [27]Xiang Q J, Yu J G, Wong P K. J. Colloid Interface Sci., 2011,357:163-167 [28]Nosaka Y, Komori S, Yawata K, et al. Phys. Chem. Chem. Phys., 2003,5:4731-4735 [29]Xiang Q, Yu J, Wang W, et al. Chem. Commun., 2011,47: 6906-6908 [30]Tsai C H, Stern A, Chiou J F. J. Agric. Food Chem., 2001, 49:2137-2141

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(0)
  • Abstract views(198)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return