Citation: ZHAI Hua-Song, WANG Kun-Peng, YU Chun-Yan, ZHAI Guang-Mei, DONG Hai-Liang, XU Bing-She. Effect of N2 Flow Rate on Morphology, Optical and Electrical Properties of GaN[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2027-2033. doi: 10.3969/j.issn.1001-4861.2013.00.323 shu

Effect of N2 Flow Rate on Morphology, Optical and Electrical Properties of GaN

  • Received Date: 13 May 2013
    Available Online: 6 June 2013

    Fund Project: 国家自然科学基金(No.51002102) (No.51002102)山西省回国留学人员重点科研(2009-03)资助项目。 (2009-03)

  • GaN micro/nanostructures were synthesized by chemical vapor deposition method (CVD) on Si (100) substrate with catalyst Ni, Ga and NH3 as raw materials. Effect of N2 flow rate on the morphology as well as optical and electrical properties of GaNwere researched. The morphology, structure, composition, optical and electrical properties were characterized by Field emission scanning electron microscopy (SEM), Transmission electron microscopy(TEM), X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDS), Photoluminescence (PL) and Hall effect measurement system (HMS-3000). The results indicate that with the increase of N2 flow rate, the morphology of GaNevolved from microrods to vermicular-like wires and then to smooth nanowires. All samples are hexagonal wurtzite, and show near-band-edge UVemission peaks of 383 nm and blue light emission peaks of about 470 nm. Hall test results show that all samples are p-type. Furthermore, the morphology evolution mechanisms of GaNare analyzed.
  • 加载中
    1. [1]

      [1] Qian F, Li Y, Gradecak S, et al. Nat. Mater., 2008,7:701- 706 [2] Tomioka K, Motohisa J, Hara S, et al. Nano Lett, 2010,10(5): 1639-1644 [3] Schwarz U T, Pindl M, Wegscheider W, et al. Appl. Phys. Lett., 2005,86(16):161112-161115 [4] ZHU Lin(朱琳), YU Chun-Yan(余春燕), LIANG Jian(梁建), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013, 29(1):63-68 [5] Seryogin G, Shalish I, Moberlychan W, et al. Nano Technol., 2005,16:2342-2345 [6] Dong Z H, Xue C S, Zhuang H Z, et al. Nano struct., 2005, 27:32-37 [7] Cai X M, Djuri?觢ic A B, Xie M H, et al. Appl. Phys. Lett., 2005, 87(18):183103-183105 [8] Wang L, Zhang X, Huang R, et al. Solid State Commun., 2004,130(11):769-772 [9] Yin L W, Bando Y, Zhu Y C, et al. Appl. Phys. Lett., 2004, 84(19):3912-3914 [10]Tu L W, Hsiao C L, Chi T W, et al. Appl. Phys. Lett., 2003, 82(10):1601-1603 [11]Kim H M, Kim D S, Kim D Y, et al. Appl. Phys. Lett., 2002,81(12):2193-2195 [12]Kim H M, Kim D S, Park Y S, et al. Adv Mater., 2002,14 (13-14):991-993 [13]Li Z J, Chen X L, Li H J, et al. Appl. Phys. A, 2001,72(5): 629-632 [14]LIANG Jian(梁建), LIU Hai-Rui(刘海瑞), WANG Xiao-Ning (王晓宁), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013,29(5):1019-1024 [15]Chung R B, Han C, Pan C C, et al. Appl. Phys. Lett., 2012, 101(13):131113-131116 [16]WANG Xiao-Yong(王晓勇), ZHONG Ming(种明), ZHAO De -Gang(赵德刚), et al. Acta Phys. Sin.(Wuli Xuebao), 2012, 61(21):217302-217307 [17]Kwon H Y, Shin M J, Choi Y J, et al. Cryst. Growth Des., 2009,311(16);4146-4151 [18]Hersee S D, Sun X Y, Wang X. Nano Lett, 2006,6(8):1808 -1811 [19]Seong H K, Jeong H, Ha R, et al. Mater. Int., 2008,14(3): 353-356 [20]Xiang X, Cao C B, Zhai H Z, et al. Appl. Phys. A, 2005,80 (5):1129-1132 [21]Lü W, Wu L L, Wu Y S, et al. Cryst. Growth Des., 2007, 307(1):1-5 [22]CAO Yu-Ping(曹玉萍), XUE Cheng-Shan(薛成山), SHI Feng(石锋), et al. J. Funct. Mater.(Gongneng Cailiao), 2010, 41(2):264-267 [23]Beh K P, Yam F K, Low L L, et al. Acuum, 2013,95:6-11 [24]Cai X M, Djuri?觢ic A B, Xie M H, Thin Solid Films., 2006, 515(3):984-989 [25]Shi F, Zhang D D, Xue C S. Mater. Sci. Eng. B, 2010,167 (2):80-84 [26]Huang C T, Song J H, Lee W F, et al. J. Am. Chem. Soc., 2010,132(13):4766-4771 [27]Low L L, Yam F K, Beh K P, et al. Appl. Surf. Sci., 2011, 258(1):542-546 [28]Kang S, Kang B K, Kim S W, et al. Cryst. Growth Des., 2010,10(6):2581-2584 [29]Wei X F, Shi F. Appl. Surf. Sci., 2011,257(23):9931-9934 [30]Furtmayr F, Vielemeyer M, Stutzmann M, et al. J. Appl. Phys., 2008,104(3):034309-034315 [31]Navamathavan R, Ra Y H, Song K Y, et al. Appl. Phys., 2011,11(1):77-81 [32]Wang Y, Xue C, Zhuang H, et al. Appl. Surf. Sci., 2009, 255:7719-7722 [33]Seryogin G, Shalish I, Moberlychan W, et al. Nanotechnology, 2005,16:2342-2345 [34]Low L L,Yam F K,Beh K P, et al. Appl. Surf. Sci., 2011, 258(1):542-546 [35]Su Y, Gao M, Meng X, et al. J. Phys. Chem. Solids., 2009, 70(7):1062-1065 [36]Zhang G Y, Tong Y Z, Yang Z J, et al. Appl. Phys. Lett., 1997,71(23):3376-3378 [37]Kim J R, Kim B K, Lee I J, et al. Phys. Rev. B, 2004,69 (23):233303-233306 [38]Li J Y, An L, Lu C G, et al. Nano Lett., 2006,6(2):148-152

  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    3. [3]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    9. [9]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    13. [13]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    14. [14]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    18. [18]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    19. [19]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    20. [20]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

Metrics
  • PDF Downloads(0)
  • Abstract views(192)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return