Citation: ZHANG Xin, CHEN Lin, WANG Hai-Fang, CAO Ao-Neng. One-Step Microwaving Method to Synthesize Graphene-CdS Nanocomposite[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1675-1679. doi: 10.3969/j.issn.1001-4861.2013.00.312 shu

One-Step Microwaving Method to Synthesize Graphene-CdS Nanocomposite

  • Received Date: 27 February 2013
    Available Online: 19 June 2013

    Fund Project: 国家自然科学基金(No.21073117和No.21071094)资助项目。 (No.21073117和No.21071094)

  • Graphene-CdS nanocomposite is a very promising optoelectronic material, and its optoelectronic properties are critically dependent on the distribution of CdS nanoparticles (NPs) on single sheets of graphene. Herein, we developed a facile one-step one-pot microwaving method to produce graphene-CdS nanocomposite, only involving of a few minutes' microwaving of the mixture of graphene oxide (GO), dihydrate acid cadmium and thioacetamide in 90% ethylene glycol solvent. The whole process is simple, efficient and environmental friendly. This method is an improvement of our previous dimethyl sulfoxide method (Adv. Mater., 2010,22:103-106). Using stoichiometric thioacetamide as the sulfur source, the current method avoided the byproduct of hazard hydrogen sulfide gas of the previous method. While using GO as the initial material, which was simultaneously reduced during the microwaving process as CdS NPs grew on graphene sheet, guaranteed that graphene was mainly single-layer sheets in the final nanocomposite. TEM and XRD results show that well-crystallized CdS NPs of a blende structure with an average diameter of about 5.7 nm nicely distributed on single graphene sheets with almost no aggregation.
  • 加载中
    1. [1]

      [1] Abergel D S L, Russell A, Fal'ko V I. Appl. Phys. Lett., 2007,91(6):063125(3pp)

    2. [2]

      [2] An S J, Zhu Y W, Lee S H, et al. J. Phys. Chem. Lett., 2010,1:1259-1263

    3. [3]

      [3] Ansari S, Giannelis E P. J. Polym. Sci. Pol. Phys., 2009,47: 888-897

    4. [4]

      [4] Artiles M S, Rout C S, Fisher T S, et al. Adv. Drug Deliv. Rev., 2011,63:1352-1360

    5. [5]

      [5] Kuila T, Bose S, Khanra P, et al. Biosens. Bioelectron., 2011,26:4637-4648

    6. [6]

      [6] Grande L, Chundi V T, Weib D, et al. Particuology, 2012, 10:1-8

    7. [7]

      [7] Velten J, Mozer A J, Li D, et al. Nanotechnology, 2012,23 (8):0805201(6pp)

    8. [8]

      [8] Xu G, Liu J, Wang Q, et al. Adv. Mater., 2012,24:OP71-OP76

    9. [9]

      [9] Chen S, Chrzan D C. Phys. Rev. B. Condens. Matter. Mater. Phys., 2011,84:195409(4pp)

    10. [10]

      [10] Zhang Y H, Tang Z R, Fu X Z, et al. ACS Nano, 2010,4: 7303-7314

    11. [11]

      [11] Zhang H, Lü X J, Li Y M, et al. ACS Nano, 2010,4:380-386

    12. [12]

      [12] Akhavan O, Ghaderi E. J. Phys. Chem. C, 2009,113:20214-20220

    13. [13]

      [13] Chen C, Cai W M, Long M C, et al. ACS Nano, 2010,4: 6425-6432

    14. [14]

      [14] Xu T G, Zhang L W, Cheng H Y, et al. Appl. Catal. B, 2011,101:382-387

    15. [15]

      [15] CHEN Qi-Yuan(陈启元), LAN Ke(兰可), YI Zhou-Lan(尹周 澜), et al. Mater. Rev.(Cailiao Daobao), 2005,19(1):20-23

    16. [16]

      [16] Niemeyer C M. Angew. Chem. Int. Ed., 2003,42(47):5796-5800

    17. [17]

      [17] Zhao H Y, Douglas E P, Harrison B S, et al. Langmuir, 2001,17(26):8428-8433

    18. [18]

      [18] Li Q, Guo B D, Yu J G, et al. J. Am. Chem. Soc., 2011,133 (28):10878-10884

    19. [19]

      [19] Zhao X M, Zhou S W, Jiang L P, et al. Chem. Eur. J., 2012, 18:4974-4981

    20. [20]

      [20] Ye A H, Fan W Q, Zhang Q H, et al. Catal. Sci. Technol., 2012,2:969-978

    21. [21]

      [21] Cao A N, Liu Z, Chu S S, et al. Adv. Mater., 2010,22:103-106

    22. [22]

      [22] CHANG Yan-Li(常艳丽), CHEN Sheng(陈胜), CAO Ao-Neng(曹傲能). J. Shanghai Univ.: Nat. Sci. Ed.(Shanghai Daxue Xuebao: Ziran Kexueban), 2010,16(6):577-581

    23. [23]

      [23] ZHOU Tian(周田), CHEN Bing-Di(陈炳地), YAO Ai-Hua (姚爱华), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2013,29(2):231-236

    24. [24]

      [24] Tang L H, Wang Y, Li Y M, et al. Adv. Funct. Mater., 2009,19:2782-2789

    25. [25]

      [25] Perebeinos V, Tersoff J, Avouris P. Phys. Rev. Lett., 2005, 94:086802(4pp)

    26. [26]

      [26] MIN Shi-Xiong (敏世雄), LÜ Gong-Xuan (吕功煊). Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2011,27(9):2178-2184

    27. [27]

      [27] Xu Y, Bai H, Lu G, et al. J. Am. Chem. Soc., 2008,130(18): 5856-5857

    28. [28]

      [28] HAN Zhi-Dong(韩志东), WANG Jian-Qi(王建祺). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(5):459-461

    29. [29]

      [29] Zhao X, Zhou S, Shen Q, et al. Analyst, 2012,137:3697-3703

    30. [30]

      [30] Li Y J, Ma M J, Yin G, et al. Chem. Eur. J., doi:10.1002/chem.201203521

    31. [31]

      [31] Yang S T, Chang Y, Wang H, et al. J. Colloid Interface Sci., 2010,351(1):122-127

    32. [32]

      [32] Wang C L, Zhang H, Lin Z, et al. Langmuir, 2009,25(17): 10237-10242

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(0)
  • Abstract views(279)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return