Citation: DING Lan-Lan, LUAN Li-Qiang, SHI Jia-Wei, LIU Wei. Phthalocyanine Based Photosensitizers for Photodynamic Therapy[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1591-1598. doi: 10.3969/j.issn.1001-4861.2013.00.311 shu

Phthalocyanine Based Photosensitizers for Photodynamic Therapy

  • Received Date: 26 February 2013
    Available Online: 20 June 2013

    Fund Project: 国家自然科学基金(No.21071090) (No.21071090)山东大学自主创新基金(No.2012JC013)资助项目。 (No.2012JC013)

  • Photodynamic therapy (PDT) is a clinically approved procedure. Due to its minimal normal tissue toxicity, negligible side effects and high selectivity, it has emerged as an efficient treatment method for many kinds of cancers. Recently, significant effort has been devoted to enhance its selectivity and phototoxicity toward malignant tissues. This review summarizes the recent research of photosensitizers, especially focuses on the progress of the third generation photosensitizers based on phthalocyanines.
  • 加载中
    1. [1]

      [1] Dolmans D, Fukumura D, Jain R. Nat. Rev. Cancer, 2003,3 (5):380-387

    2. [2]

      [2] Agostinis P, Berg K, Cengel K, et al. CA Cancer J Clin, 2011,61(4):250-281

    3. [3]

      [3] Dougherty T, Gomer C, Henderson B, et al. J. Natl. Cancer Inst., 1998,90(12):889-905

    4. [4]

      [4] GAO Yuan(高源), QIAO Guang-Ming(乔光明), LI Na(李娜), et al. Chinese J. Anal. Chem.(Fenxi Huaxue), 2011,39(12): 1926-1931

    5. [5]

      [5] Foote C. Science, 1968,162(3857):963-970

    6. [6]

      [6] Moan J, Berg K. Photochem. Photobiol., 1991,53(4):549-553

    7. [7]

      [7] Juzeniene A, Nielsen K, Moan J. J. Environ. Pathol. Toxicol. Oncol., 2006,25(1-2):7-28

    8. [8]

      [8] Brancaleon L, Moseley H. Lasers Med. Sci., 2002,17(3):173-186

    9. [9]

      [9] Juzeniene A, Juzenas P, Ma L, et al. Lasers Med. Sci., 2004, 19(3):139-149

    10. [10]

      [10] Sharman W, Allen C, van Lier J. Drug Discov. Today, 1999, 4(11):507-517

    11. [11]

      [11] WANG Ling-Yun(汪凌云), CAO De-Rong(曹德榕). Chin. J. Org. Chem.(Youji Huaxue), 2012,32:2248-2264

    12. [12]

      [12] ZHU Jing(朱菁), SHI Hong-Min(施虹敏), ZHANG Hui-Guo (张慧国). Chinese J. Lasers(Zhongguo Jiguang), 2000,27(1): 95-96

    13. [13]

      [13] JIN Xiao-Min(金晓敏), WU Jian(吴健). Chin J. Med. Chem. (Zhongguo Yaowu Huaxue Zazhi), 2002,12(1):52-56

    14. [14]

      [14] Pandeyi R K, Potter W R, Meunier I, et al. Photochem. Photobiol., 1995,62(4):764-768

    15. [15]

      [15] LIU Yan-Yan(刘岩岩), WANG Xue-Song(王雪松), ZHANG Bao-Wen(张宝文). Prog. Chem.(Huaxue Jinzhan), 2008,20 (9):1345-1352

    16. [16]

      [16] Luan L, Ding L, Zhang W, et al. Bioorg. Med. Chem. Lett., 2013,23(13):3775-3779

    17. [17]

      [17] Uslan C, Sesalan B, Durmus M. J. Photochem. Photobiol. A. Chem., 2012,235:56-64

    18. [18]

      [18] Liu W, Jensen T, Fronczek F, et al. J. Med. Chem., 2005,48 (4):1033-1041

    19. [19]

      [19] Luan L, Chen J, Ding L, et al. Chem. Lett., 2012,41:1012-1014

    20. [20]

      [20] WU Li-Rong(吴丽荣), HUANG Li-Ying(黄丽英), XU Hui (许慧). U. Chem.(Daxue Huaxue), 2010,25(4):1-10

    21. [21]

      [21] LIU Li-Zhen(刘丽珍), ZHENG Si-Ning(郑思宁), PENG Yi-Ru(彭亦如), et al. J. Mol. Sci.(Fenzi Kexue Xuebao), 2005, 21(5):56-62

    22. [22]

      [22] HUANG Yan(黄焱), XU Guo-Xing(徐国兴), PENG Yi-Ru(彭亦如). Applied Laser(Yingyong Jiguang), 2010,30(6):518-524

    23. [23]

      [23] HUANG Jian-Dong(黄剑东), LIU Feng-Ran(刘丰冉), CHEN Yan-Mei(陈燕梅), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22(3):435-442

    24. [24]

      [24] NIU Li-Hong(牛丽红), LI Zhong-Yu(李忠玉), CHEN Zi-Hui (陈子辉), et al. Chemistry(Huaxue Tongbao), 2009,72(3):251-257

    25. [25]

      [25] HUANG Jin-Ling(黄金陵), CHEN Nai-Sheng(陈耐生), WANG Jun-Dong(王俊东), et al. CN Patent, CN1593424. 2005-03-16.

    26. [26]

      [26] Derycke A, de Witte P. Adv. Drug Deliv. Rev., 2004,56(1): 17-30

    27. [27]

      [27] Bechet D, Couleaud P, Frochot C, et al. Trends Biotechnol., 2008,26(11):612-621

    28. [28]

      [28] Nishiyama N, Morimoto Y, Jang W, et al. Adv. Drug Deliv. Rev., 2009,61(4):327-338

    29. [29]

      [29] Couleaud P, Morosini V, Frochot C, et al. Nanoscale, 2010, 2(7):1083-1095

    30. [30]

      [30] Sharman W, van Lier J, Allen C. Adv. Drug Deliv. Rev., 2004,56(1):53-76

    31. [31]

      [31] Solban N, Rizvi I, Hasan T. Lasers Surg. Med., 2006,38(5): 522-531

    32. [32]

      [32] Verma S, Watt G, Mai Z, et al. Photochem. Photobiol., 2007,83(5):996-1005

    33. [33]

      [33] Schwaber J, Cohen E. Nature, 1973,244(5416):444-447

    34. [34]

      [34] Miller G, Lown J. Drug Dev. Res., 1997,42(3/4):182-197

    35. [35]

      [35] Mitsunaga M, Ogawa M, Kosaka N, et al. Nat. Med., 2011, 17(12):1685-U1210

    36. [36]

      [36] Peoples G, Goedegebuure P, Smith R, et al. Proc. Natl. Acad. Sci. U. S. A., 1995,92(2):432-436

    37. [37]

      [37] Ke M, Yeung S, Fong W, et al. Chem. Eur. J., 2012,18(14): 4225-4233

    38. [38]

      [38] Sibrian-Vazquez M, Jensen T, Vicente M. Org. Biomol. Chem., 2010,8(5):1160-1172

    39. [39]

      [39] Sibrian-Vazquez M, Jensen T, Hammer R, et al. J. Med. Chem., 2006,49(4):1364-1372

    40. [40]

      [40] Sibrian-Vazquez M, Jensen T, Vicente M. J. Med. Chem., 2008,51(10):2915-2923

    41. [41]

      [41] Sehgal I, Sibrian-Vazquez M, Vicente M. J. Med. Chem., 2008,51(19):6014-6020

    42. [42]

      [42] Master A, Livingston M, Oleinick N, et al. Mol. Pharm., 2012,9(8):2331-2338

    43. [43]

      [43] Master A, Qi Y, Oleinick N, et al. Nanomedicine, 2012,8(5): 655-664

    44. [44]

      [44] Ali H, Ait-Mohand S, Gosselin S, et al. J. Org. Chem., 2011,76(6):1887-1890

    45. [45]

      [45] Ongarora B, Fontenot K, Hu X, et al. J. Med. Chem., 2012, 55(8):3725-3738

    46. [46]

      [46] Wang C, Delcros J, Cannon L, et al. J. Med. Chem., 2003, 46(24):5129-5138

    47. [47]

      [47] Cosentino C, Bates D. Feedback Control in Systems Biology. Cleveland: CRC Press, 2011.

    48. [48]

      [48] Samor C, Guerrini A, Varchi G, et al. Bioconjugate Chem., 2008,19(11):2270-2279

    49. [49]

      [49] Papadopoulou M, Rosenzweig H, Bloomer W. Bioorg. Med. Chem. Lett., 2004,14(6):1519-1522

    50. [50]

      [50] Eiseman J, Rogers F, Guo Y, et al. Cancer Res., 1998,58 (21):4864-4870

    51. [51]

      [51] Holley J, Mather A, Wheelhouse R, et al. Cancer Res., 1992,52(15):4190-4195

    52. [52]

      [52] Yuan Z, Egorin M, Rosen D, et al. Cancer Res., 1994,54(3): 742-748

    53. [53]

      [53] Cullis P, Green R, Malone M. J. Chem. Soc., Perkin Trans. 2, 1995,0(7):1503-1511

    54. [54]

      [54] Dallavalle S, Giannini G, Alloatti D, et al. J. Med. Chem., 2006,49(17):5177-5186

    55. [55]

      [55] Delcros J, Tomasi S, Carrington S, et al. J. Med. Chem., 2002,45(23):5098-5111

    56. [56]

      [56] Battaglia A, Guerrini A, Baldelli E, et al. Tetrahedron Lett., 2006,47(16):2667-2670

    57. [57]

      [57] Jiang X, Yeung S, Lo P, et al. J. Med. Chem., 2011,54(1): 320-330

    58. [58]

      [58] Jiang X, Lo P, Tsang Y, et al. Chem. Eur. J., 2010,16(16): 4777-4783

    59. [59]

      [59] Siegel G, Albers R, Brady S. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects: Vol.1. Salt Lake City: Academic Press, 2006.

    60. [60]

      [60] Zorlu Y, Dumoulin F, Bouchu D, et al. Tetrahedron Lett., 2010,51(50):6615-6618

    61. [61]

      [61] Liu J, Lo P, Fong W, et al. Org. Biomol. Chem., 2009,7(8): 1583-1591

    62. [62]

      [62] Araki J, Ito K. Soft Matter, 2007,3(12):1456-1473

    63. [63]

      [63] Chen Y, Liu Y. Chem. Soc. Rev., 2010,39(2):495-505

    64. [64]

      [64] Hapiot F, Tilloy S, Monflier E. Chem. Rev., 2006,106(3): 767-781

    65. [65]

      [65] Leng X, Choi C, Luo H, et al. Org. Lett., 2007,9(13):2497-2500

    66. [66]

      [66] Baugh S, Yang Z, Leung D, et al. J. Am. Chem. Soc., 2001, 123(50):12488-12494

    67. [67]

      [67] Ruebner A, Yang Z, Leung D, et al. Proc. Natl. Acad. Sci. U. S. A., 1999,96(26):14692-14693

    68. [68]

      [68] Kralova J, Synytsya A, Pouckova P, et al. Photochem. Photobiol., 2006,82(2):432-438

    69. [69]

      [69] Lau J, Lo P, Fong W, et al. Chem. Eur. J., 2011,17(27): 7569-7577 [70] Lau J, Lo P, Tsang Y, et al. Chem. Commun., 2011,47(34): 9657-9659

    70. [70]

      [71] Johnson L, Walsh M, Chen L. Proc. Natl. Acad. Sci. U. S. A., 1980,77(2):990-994

    71. [71]

      [72] Lee D, Helps S, Macardle P, et al. Neurochem. Res., 2009, 34(10):1857-1866

    72. [72]

      [73] Baracca A, Sgarbi G, Solaini G, et al. BBA-Bioenergetics, 2003,1606(1-3):137-146

    73. [73]

      [74] Ferlini C, Scambia G. Nat. Protocols, 2007,2(12):3111-3114

    74. [74]

      [75] Zhao Z, Chan P, Li H, et al. Inorg. Chem., 2012,51(2):812-821

    75. [75]

      [76] Mao J, Zhang Y, Zhu J, et al. Chem. Commun., 2009,0(8): 908-910

    76. [76]

      [77] Lau J, Lo P, Fong W, et al. J. Med. Chem., 2012,55(11): 5446-5454

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    4. [4]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    5. [5]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(576)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return